

Status of Sentinels Observation Scenarios

Meeting with Austrian Partners, 27 May 2014

27 May 2014, Vienna

Main objectives of the Sentinel operations strategy CS

- Provide in priority data to Copernicus services and for utilisation by ESA / EU Member States according to their specified requirements
- Ensure systematic and routine operational activities:
 - \checkmark with a high level of automation
 - ✓ with pre-defined operations to the maximum extent possible
- Establish a conflict free operations profile, in particular with the elaboration of pre-defined mission observation scenarios

Sentinel-1

Sentinel-1 observation scenario objective

In line with the Sentinel operations strategy objectives:

 \rightarrow Implement a pre-defined and conflict-free observation plan, aiming at fulfilling, to the best extent, the observation requirements from:

- the Copernicus services
- the use by ESA / EU Member States
- \rightarrow In addition, on best effort basis:
 - ensure continuity of ERS/ENVISAT
 - implement requirements from the science community
 - contribute to international cooperation activities.

 \rightarrow Need to find *a priori* the solutions on the potential conflict among users (e.g. different SAR operation modes / polarisation required over same geographical area)

Collecting the Sentinel-1 observation requirements

Group	Source of Requirements		
Copernicus services and Copernicus use	 Extrapolation of Copernicus Data Access Data Warehouse requirements Direct discussions with Copernicus services and EU Agencies (e.g. EMSA) 		
National services and use by ESA and EU Member States	 Discussions with Member States Delegations Reply to Collaborative Ground Segment questionnaire (in the framework of the GOCG) 		
Scientific use, on-going projects, continuity of ERS/ENVISAT	 Recommendations from scientists at key SAR workshops (FRINGE, SEASAR), and others ESA organised workshop (e.g. SEN4SCI, Cryosphere, Int. Forum on Geohazards, etc.) ESA GSE Projects (e.g. Polar View, MARISS, Terrafirma, GMFS, etc.) Glob-series projects, CCI, SEOM, etc. Extrapolation of ERS/ENVISAT projects 		
International Initiatives, International cooperation	 GEO/CEOS (e.g. FCT, GFOI, Geo-hazard Supersites), IGOS, FAO, REDD, PSTG, IICWG, GCOS, CliC, TIGER, DRAGON, etc. Requests from international partners (e.g. US (NOAA / NASA / USGS), Australia, China, etc.) 		
Other use including use for commercial value-adding	EARSC, etc.		

Few examples of Sentinel-1 Observation Scenario First 6 months of the ramp-up phase

Sentinel-1 gradual capacity increase (ramp-up) driven by data download & sensing time capacities

Slide 7

Sentinel-1 major observation scenario constituents for the first 6 month

ESA UNCLASSIFIED – For Official Use

More details at: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario

Sentinel-2

Sentinel-2 - Main facts

- Spacecrafts: 2 operating in twin configuration
- Spectral bands: 13 (VIS–NIR–SWIR spectral domains)
- Spatial resolution: 10m / 20m / 60m
- Swath: 290 km
- Orbit: Sun-synchronous at 786 km (14+3/10 revs per day), with LTDN 10:30 AM
- Multispectral Instrument: operating in pushbroom principle, filter based optical system, low noise image compression techniques
- Lifetime: 7.25 years, extendable to 12 years
- Launch: currently planned not before 30 April 2015

Systematic acquisition and systematic processing of Level-1B/1C data:

- All land surfaces between 56deg South and 84deg North latitude
- Major islands (greater than 100 km2 size), EU islands and all the other small islands located at less than 20km from the coastline
- Mediterranean Sea, all inland water bodies and all closed seas
- Specific acquisition campaigns as required
- **10-day revisit with 1 satellite**
- 5 day revisit with 2 satellites

There will be gradual ramp-up until the Full Operational scenario is reached

Start of ramp-up phase:

- Assuming availability of 2 downlink stations out of 4
- Ensuring coverage of global Cal/Val needs
- Ensuring COPERNICUS CORE datasets needs for Europe/Africa systematically
- Ensuring maximum coverage/orbit length for GRI generation

EFFECTIVE COVERED AREA AT THE END OF THE RAMP UP PHASE (FULL OPERATIONALITY)

derived from simulated swath - cleared for lead in/out datatakes

End of ramp-up

27 May 2014, Vienna

Additional observation requirements have been received from Copernicus Services, Member States (collaborative GS), the science community, etc.:

- Night-time observations
- Antarctica coverage
- Coverage of oceans or coral reefs on global scale
- Coverage of coastal waters (beyond the MRD coast region coverage)

• ...

Those requirements are technically simulated and assessed by ESA.

Additional observation requirements have been received from Copernicus Services, Member States (collaborative GS), the science community, workshops etc.....e.g.:

- Coverage of oceans
- Coverage of coral reefs on global scale
- Night-time observations
- Antarctica coverage
- Coverage of coastal waters (beyond the MRD coast region coverage)

...such requirements are taken onboard for mission planning simulations. Their inclusion will follow the process between European Commission and ESA to handle the evolution of the Copernicus Space Component.

Sentinel-3

Observation scenario: Instrument acquisitions via sun ephemeris

Data will be acquired systematically based on a preset nominal mission scenario, as defined in the HLOP:

- Operations for OLCI and the visible channels of the SLSTR are based on specific solar illumination conditions (SZA < 80deg)
- MWR acquires data over the whole orbit.
- SRAL acquires data over the whole orbit with a predefined, automatically performed split between Low Resolution Mode (LRM) and SAR mode.

Sentinel-3: revisit time and coverage

Optical missions:

Short Revisit times for optical payload, even with 1 single satellite

		Revisit at Equator	Revisit for latitude > 30°	Spec.
Ocean Colour (Sun-glint free, day only)	1 Satellite	< 3.8 days	< 2.8 days	< 2 days
	2 Satellites	< 1.9 days	< 1.4 days	< 2 days
Land Colour (day only)	1 Satellite	< 2.2 days	< 1.8 days	< 2 days
	2 Satellites	< 1.1 day	< 0.9 day	
SLSTR dual view (day and night)	1 Satellite	< 1.9 days	< 1.5 days	
	2 Satellites	< 0.9 day	< 0.8 day	< 4 days

Topography Mission: ground track repeatability, dense spatial sampling

Ground tracks after 1 complete cycle (27 days)

- Near-Real Time (< 3 hr) availability of the L2 products
- Slow Time Critical (STC) (1 to 2 days) delivery of higher quality products for assimilation in models (e.g. SSH, SST)

European Space Agency