

ROOM-TEMPERATURE, SOLID-STATE QUANTUM SENSORS

Michael Trupke, University of Vienna

OVERVIEW

Aim

Desktop-scale system for fluid NMR/ESR analysis

Based on

Quantum sensor qubits in diamond

PHILIPS HEALTHCARE - APPLICATIONS

MobileDiagnost Schweiz

Schweiz Hybrid-OP mit EchoNavigator FlexMove

Philips Klagenfurt within Philips Personal Health

Worldwide activities in healthcare

inced Molecular jing	Emergency Care and Resuscitation Solutions	Medical parts & supplies
		Mother & Child Care
thing and Respira- care	Enterprise telehealth portfolio	MRI Systems & Solutions
cal Informatics	Fluoroscopy	Pathology
puted Tomography nines & Solutions	Hospital Respiratory Care	Patient Monitoring
		Radiation Oncology
omer Service Solu- ;	Image Guided Therapy Devices	Radiography
		Refurbished Systems
nostic ECG	Interventional X-ray Sys-	Sleep
Neuroimaging	Terns and Solutions	Ultrasound

PHILIPS

Adv

Imag

Bre

tory

Clin

Con

Mad

Dia

Klagenfurt Airfryer

INFINEON TECHNOLOGIES AUSTRIA - PRODUCTION

Product palette

Product example: Silicon MEMS microphone

CTR \rightarrow SILICON AUSTRIA LABS – COORDINATION AND SYSTEMS INTEGRATION

The Austrian Research Center for Electronic Based Systems

Financing & Company type 140 Mio. Euro public funding until 2023 140 Mio. Euro investment by industry partners Public-Private-Partnership GmbH (Ltd.) organized under private law

Shareholders50.1 % Republic of Austria10 % Styrian Business Promotion Agency SFG10 % State of Carinthia4.95 % Upper Austrian Research GmbH UAR24.95 % Industrial Association FEEI

Bundesministerium Verkehr, Innovation und Technologie

 Das Land

 Steiermark

Das Land Steiermark

R & D AT SILICON AUSTRIA LABS (EX CTR)

NETWORK OF RESEARCH AND INDUSTRY

Founded	1997
Employees	60 (+14 PhD students) excl. Master students
Turnover 2018	~7 Mio.€
Shareholder	Silicon Austria LABS GmbH 50,1% Republic of Austria 10% State of Carinthia 10% Styrian Business Promotion Agency SFG 4,95% Upper Austria Research GmbH UAR 24,95% Industrial Association FEEI
Network	Forschung Austria, EPoSS, ECSEL Austria, IVAM, AG Sensorik, AG Innovation IV, me2c Cluster TU Wien, JKU Linz, AAU Klagenfurt, TU Graz, TU Dresden, Uni Freiburg, TU Clausthal, EPFL, TU Delft, CNRS, KOC University

Chung Austria

www.forschungaustria.ac.at

COMET K1 COMPETENCE CENTRE

EN 150 9001:2000

UNIVIE – QUANTUM MICRO-DEVICES

Optical Microcavities

Qubits in Silicon Carbide

(2019)

PHYSICAL REVIEW APPLIED

Optical Properties of Vanadium in 4H Silicon Carbide for Quantum Technology

L. Spindlberger,¹ A. Csóré,² G. Thiering,² S. Putz,^{3,*} R. Karhu,⁴ J. Ul Hassan,⁴ N.T. Son,⁴ T. Fromherz,¹ A. Gali,^{2,5} and M. Trupke^{3,†}

(accepted)

Spin-Photon Entanglement

Scalable spin-photon entanglement by time-to-polarization conversion

Rui Vasconcelos^{1,*}, Sarah Reisenbauer^{1,2,*}, Cameron Salter^{1,*}, Georg Wachter^{1,2}, Daniel Wirtitsch^{1,2}, Jörg Schmiedmayer², Philip Walther¹, and Michael Trupke^{1,2, *}

arXiv:1812.10338

Electrical Qubit readout

Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond

Petr Siyushev^{1,2a}†, Milos Nesladek^{3,4,5}1[†], Emilie Bourgeois^{3,4}, Michal Gulka^{3,4,5}, Jaroslav Hruby^{3,4}, Takashi Yamamoto^{3,4}‡, Michael Trupke⁶, Tokuyuki Teraji⁷, Junichi Isoya⁸S, Fedor Jelezko¹

Science 15 Feb 2019: Vol. 363, Issue 6428, pp. 728-731 DOI: 10.1126/science.aav2789

nature > light: science & applications > letters > article

Light Science & Applications

Letter | OPEN | Published: 10 April 2019

Silicon microcavity arrays with open access and a finesse of half a million

Georg Wachter, Stefan Kuhn 🏝, Stefan Minniberger, Cameron Salter, Peter Asenbaum, James Millen, Michael Schneider, Johannes Schalko, Ulrich Schmid, André Felgner, Dorothee Hüser, Markus Arndt & Michael Trupke 🏁

Light: Science & Applications 8, Article number: 37 (2019) | Download Citation 🛓

WHAT IS A QUANTUM SENSOR?

A sensor which makes use of

- I. A quantum object (can be nanoscale)
- II. Quantum interference (high sensitivity)
- III. Quantum entanglement ($\propto N \text{ vs.} \propto \sqrt{N}$)

NITROGEN VACANCY

Defect in diamond lattice: substitutional nitrogen with adjacent vacancy

Spin-free environment →Long spin coherence time > 2ms

Optical initialisation and readout

Sensitive to magnetic and electric fields, temperature, strain...

Nanoscale

non-toxic

Can be implanted

Meijer et al., Appl. Phys. A 83 2, 321-327 (2006)

20 μm

TUWIEN-UNIVIE

<u>Review</u>: Doherty, M. W., Manson, N. B., Delaney, P., Jelezko, F., Wrachtrup, J., & Hollenberg, L. C. "The nitrogen-vacancy colour centre in diamond". *Physics Reports* **528**(1), 1-45 (2013).

NV SENSING APPLICATIONS

Nano-NMR (Wrachtrup, Jelezko, Walsworth groups)

E-field sensing (Wracthrup, Doherty groups)

b

In vivo Thermometry (Lukin, Wrachtrup groups)

In-vivo magnetometry (Wrachtrup, Prawer, Hollenberg groups)

Scanning nano-sensor (Degen, Maletinsky, Lukin groups)

NV SPIN CONTROL AND READOUT - ROOM TEMP.

SPIN ROTATION OF THE ELECTRONIC QUBIT

The electron resides in a magnetically quiescent environment for long coherence lifetime (>2ms), enabling high-fidelity quantum state transfer and high-resolution spectroscopy

The spin-dependent fluorescence and the Zeeman shift due to magnetic field parallel to the NV axis enable:

- Sensitive measurements of DC fields (~nanotesla sensitivity for a single NV)
- Vector magnetometry using multiple NV centres (along four crystalline axes)
- Detection of oscillating fields originating from e.g. external nuclear spins

ELECTRICAL SPIN DETECTION

Valence band

Convert spin to charge: spin-selective ionization. Does not require optical signal collection or expensive photon counters. Enhanced signal by more than $\times 1000$.

Gulka M, et al.. Pulsed Photoelectric Coherent Manipulation and Detection of NV Center Spins in Diamond. *Physical Review Applied*. 2017 Apr 28;7(4):044032.

Bourgeois, E. et al., 2017. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation. *Physical Review B*, *95*(4), p.041402.

SINGLE QUBIT ELECTRICAL READOUT

P. Siyushev et al., Science 363, 728-731 (2019)

AIM: COMPACT SENSOR FOR LIQUID ANALYTES

Desktop package enabling use of nano-ESR/NMR for: health services, nutrition analysis, citizen science, and more.

Requires robust design, detailed understanding of molecular spin interactions, and extremely sensitive readout electronics.

PROJECT: DEVICE OVERVIEW

EXAMPLE OF INTEGRATION: SPIN-DEPENDENT PHOTOCURRENT AMPLIFIER

Presently used:

General-purpose lock-in amplifier

Next step:

Tailor-made multi-stage using commercial IC Final device:

Specialized IC

TEAM AND SPONSORS

- G. Wachter
- S. Reisenbauer
- S. Putz
- S. Minniberger

