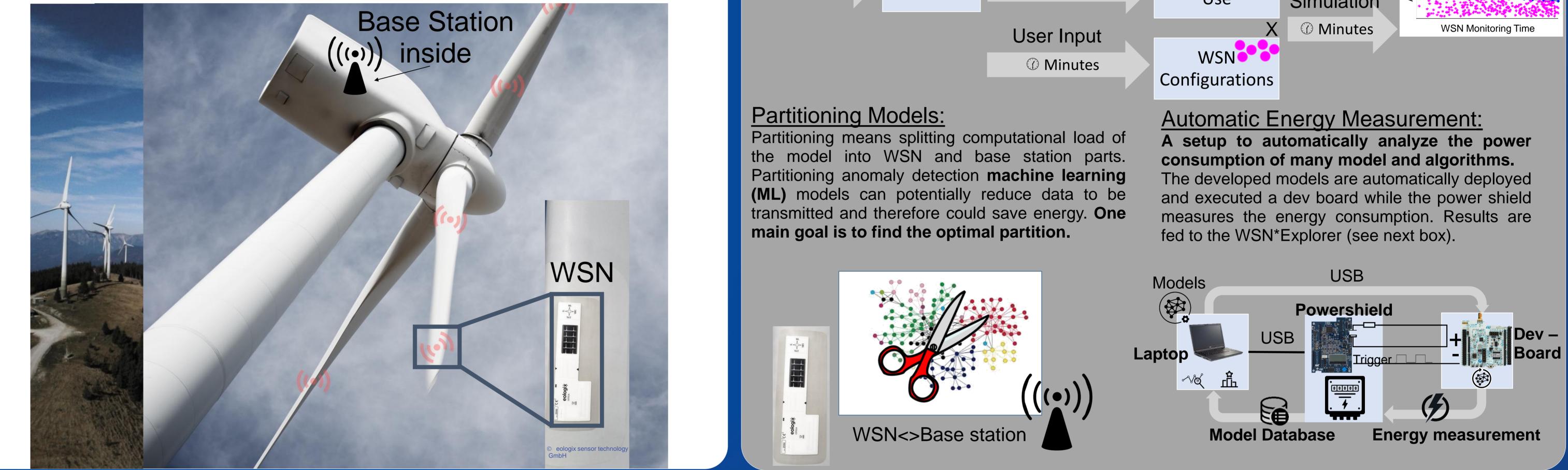
BladeWatch

Increasing Wind Power Availability through Energy-Autonomous Wireless Smart Sensors

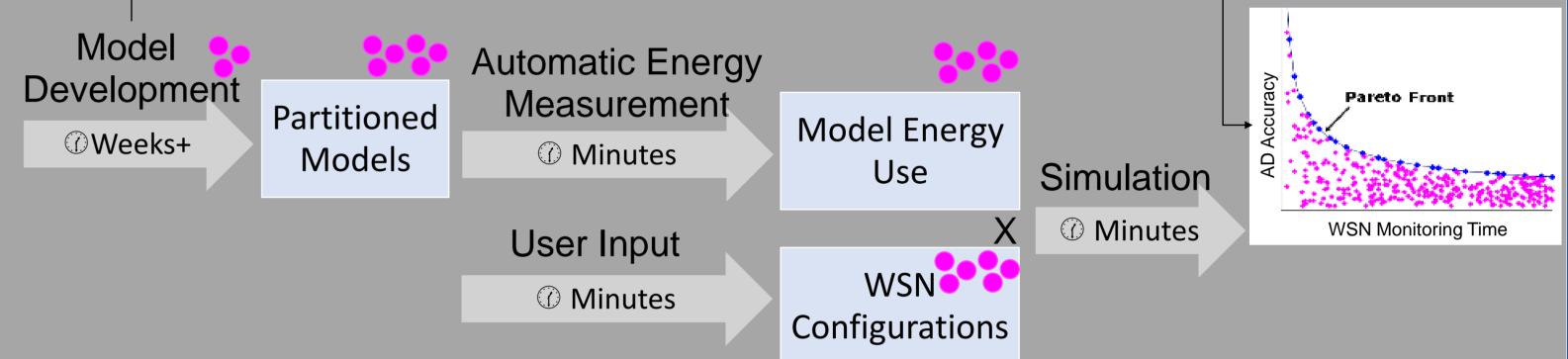
Lukas Hanna ⁽¹⁾, Manfred Mücke ⁽¹⁾, Christoph Gratl ⁽¹⁾, Franz-Martin Frieß ⁽¹⁾, Elisabeth Hieslmayr ⁽¹⁾

¹ Materials Center Leoben Forschung GmbH


Abstract

Wind turbine condition monitoring systems (CMS) are crucial for maximizing turbine up-time. Especially for blade monitoring, wired sensor are not acceptable. Wireless sensor nodes (WSNs) exist, but harvested energy is insufficient for continuous high-frequency sampling and sending. Modern machine learning algorithms/models can significantly reduce the amount of communication by computing partly on the WSN. Yielding a solid estimate of consumed energy under different solar irradiance, wind and fault conditions is not trivial, though. The BladeWatch project creates a software framework (WSN*Explorer) for power budget estimation of WSN-based CMS to bridge the gap between algorithmic research and system design. The WSN*Explorer enables CMS designers to map a large number of design options efficiently.

Problem: Finding the right WSN configuration to maximise fault detection accuracy and monitoring time


Many possible WSN configurations:

There exist many possible WSN configurations with different choices in hardware (battery size, solar panel size and type, RF link, antenna configuration ...) and software (sensor sampling frequency, sleep time between sensing activity, anomaly detection models (ADMs), partial execution on WSN..). Every combination of hardware and software choices can result in different power consumption and therefore in different monitoring times before running out of energy.

Solution: Mapping configurations and automatic energy measurement of partitioned ML ADMs

To yield a large number of model options for trade-off analysis of accuracy and WSN monitoring time, models need to be partitionable (WSN<>Base station) and their energy consumption be automatically evaluated. The WSN*Explorer (see lower box) allows CMS designers to quickly perform trade-off analysis, visualize the results and decide on optimal CMS setup (or exploration of new options).

WSN*Explorer: A Software to Simulate WSNs & Algorithms Under Different Environmental Conditions

The machine learning model metrics such as accuracy and energy consumption are supplied to the simulation and can be selected with other WSN parameters like battery size and solar cell size as well as general parameters such as location (for solar irradiation) and a specific date range. All selected parameters are then combined into many experiments (each with an unique parameter set) and simulated. The results for each experiment are various metrics e.g. energy consumption or achievable monitoring time.

Parameter Selection:

Welcome to the WSN*Explorer!										-			chievab	le monitoring hours ('	%)	battery mean total simtime (%)	
 Define parameters below Collect parameters to create experiments Compute energy estimation for experiments Inspect performance interactively Save/load/manage your session 	One P	Ê	n (algorithm) 🕨		A A			ing hours (h) 🕨	(H)	ours (h) 🕨		95 90 (<i>algorithm</i>) 85	•	D 00	(algorithm)	5	
General Simulation Configuration	Combir Param	algorithm	isumptio	•	algorithm lescriptio	ated >	t Name	monitori	me hours	it oring h		Accuracy 22			Accuracy	0 0 0 0	Each color is a
> Battery	Anomaly Detection	un 🕨	nergy cor	l gorit hm	artition (a ocation D	ays simul	xperimen	chievable chievable	otal runtir	ailed mon	visualize results	70	30 40	50 60 70 80 90	70		Anomaly Detection Model with different
> Solar Cell		<u>∞</u> •	ш 1.0 hi	⊄ igh_acc_lbl	1 Stockho	olm 7	й 7 exp42_2_280524122959	ng ng 168 10	₽ 168	0	82		achieva	able monitoring hours (%)	oni	battery mean total simtime (%)	WSN configurations.
> Sensor	'low_accuracy' p1 (70.0%; 0.10mWh), 0.2s, I/O=[80	✓ 95 ✓ 95		igh_accuracy igh_accuracy	1 Stockho 1 Stockho		7 exp25_2_280524105945 7 exp25_6_280524105945	46 <mark>27</mark> .5 112 <mark>66.6</mark>	793 168 566 168	122 56	0	95	••	• •	9	5	The overview make
	000bit/4096bit], 1.5mWh) × One of the second seco	 ✓ 95 	1.0 hi	igh_accuracy	1 Stockho		7 exp25_10_280524105945	48 <mark>28</mark> .3	730 168	120	^⁰ each	gorithm 82			gorithm	5 -	it easy to compar
> RF	'med_acc_lbl' p1 (80.0%; 0.70mWh), 1.5s, I/O=[200	✓ 70✓ 70		w_acc_lbl w_accuracy	1 Stockho 1 Stockho		7 exp42_3_280524122959 7 exp25_1_280524105945	168 10 125 74.2	0 168 63 168	-	experiment	uracy (al. 8			uracy (al		and select th

Summary

- BladeWatch develops a software framework (WSN*Explorer) for power budget estimation of WSN-based CMS
- BladeWatch bridges the gap between algorithmic research and system design for energy-autonomous WSN-based CMS
- BladeWatch enables efficient mapping of design options across SW/Algorithm and HW choices.

Partners:

https://www.eologix-ping.com/

BladeWatch:

https://projekte.ffg. at/projekt/4352938

Acknowledgement:

Die FFG ist die zentrale nationale Förderorganisation stärkt und Österreichs Innovationskraft. Dieses Projekt wird aus Mitteln der FFG gefördert. www.ffg.at

Contacts: lukas.hanna@mcl.at manfred.muecke@mcl.at