QUERKRAFTTRAGFÄHIGKEIT BESTEHENDER BETONBRÜCKEN

Die rechnerische Bewertung bestehender Eisenbahn- und Straßenbrücken aus Stahlbeton und Spannbeton gewinnt immer mehr an Bedeutung. Der Nachweis der Schubtragfähigkeit kann dabei in vielen Fällen nach aktuellem Normenstand nicht mehr erfüllt werden, weshalb im Zuge dieses Forschungsprojektes ein neuartiges Berechnungsmodell entwickelt wurde.

Allgemeine, verständliche Zusammenfassung der Projektergebnisse:

Die gestiegenen Verkehrslasten in Kombination mit den permanenten Veränderungen in den Normenwerken haben dazu geführt, dass sich die rechnerische Querkrafttragfähigkeit nach den derzeitigen technischen Regeln oft nicht mehr nachweisen lässt.

Im vorliegenden Forschungsvorhaben wurde daher das Querkraftverhalten von Stahlbeton- und Spannbetonbauteile ohne und mit geringer Schubbewehrung theoretisch analysiert. Dabei wurde der Fokus zum einen auf die Untersuchung des Einflusses der Laststellung und der Belastungsart und zum anderen auf die Analyse des Einflusses der Vorspannung auf den Querkraftwiderstand gelegt. Ein Vergleich des derzeit gültigen Bemessungsansatzes zur Berechnung des Querkraftwiderstandes für Bauteile mit Schubbewehrung gemäß Eurocode 2 mit einer Vielzahl von experimentellen Versuchsergebnissen zeigte erhebliche Tragreserven, welche mit den derzeitigen Ansätzen nicht genutzt werden können.

Auf Basis der gesammelten experimentellen Daten und den darauf aufbauenden theoretischen Arbeiten wurde im Rahmen dieses Forschungsprojektes ein neuartiger Ansatz gewählt, bei welchem der ungerissenen Druckzone ein Traganteil zur Querkrafttragfähigkeit zugetraut wird (Abb. 1). Wie eine Überprüfung mit Versuchsergebnissen zeigte, ist es dadurch möglich, den Querkraftwiderstand realistischer wiederzugeben (Abb. 2). Im Falle einer Nachrechnung können somit im Vergleich zu den derzeit gültigen Bemessungsregeln deutlich höhere rechnerische Querkrafttragfähigkeiten erzielt werden.

INFRA

ABB 1. Annahmen Schubfeldmodell

Facts:

- Laufzeit: 05/2012-05/2014
- Forschungskonsortium:
- Technische Universität Wien
- Technische Universität Graz

منفقة من ا

FFG

ABB 2. Verhältnis der experimentellen und berechneten Schubtragfähigkeit in Abhängigkeit des Querkraftbewehrungsgrades: (a) Schubfeldmodell (b) Eurocode 2

Kurzzusammenfassung

Problem

Die Anforderungen an bestehende Brückentragwerke sind aufgrund der deutlichen Zunahme der Verkehrslasten in den letzten Jahrzehnten massiv gestiegen. Demgegenüber sind die heutigen Bemessungsregeln deutlich konservativer angesetzt.

Gewählte Methodik

Auf Basis einer umfangreichen Literatursichtung wurde eine Vielzahl von experimentellen Versuchsergebnissen gesammelt und in Datenbanken katalogisiert. Es konnte somit eine solide Grundlage für die theoretischen Arbeiten und vor allem für die Modellentwicklung geschaffen werden.

Ergebnisse

Im Zuge dieses Forschungsvorhabens wurde der Ansatz verfolgt, dass dem Beton eine Beteiligung beim Abtrag von Querkräften zugetraut werden kann. Daher wurde ein Berechnungsmodell entwickelt, mit welchen ein additiver Betontraganteil auf Basis des Tragvermögens der ungerissenen Betondruckzone ermittelt werden kann.

Schlussfolgerungen

Vergleiche mit Versuchsergebnissen konnten den gewählten Ansatz an Einfeldsystemen bestätigen. Durch eine erste Umsetzung der neuartigen Modellvorstellung bei bestehenden Brückentragwerken konnte die Anwendbarkeit demonstriert werden. Inwieweit sich dieses Querkrafttragverhalten auch im Stützbereich von Durchlaufsystemen ausbilden kann, ist noch durch weitere theoretische Überlegungen und experimentelle Untersuchungen zu klären.

English Abstract

The increase of traffic loads in combination with several revisions of design codes in the last decades create the problem of not fulfilling the requirements of current design approaches. Therefore, in this research project the shear behaviour of concrete elements without and with a low amount of shear reinforcement is investigated. Based on numerous experimental data a new calculation model was developed, where an additional bearing capacity based on the shear strength of the uncracked compression zone was assumed. Comparisons with test results confirmed, that the new approach is able to describe the shear behaviour in a more realistic way.

Impressum:

Bundesministerium für Verkehr,

Innovation und Technologie DI Dr. Johann Horvatits, Abt. IV/ST 2 Technik und Verkehrssicherheit johann.horvatits@bmvit.gv.at,

DI (FH) Andreas Blust, Abt. III/I4 Mobilitäts- und Verkehrstechnologien andreas.blust@bmvit.gv.at, www.bmvit.gv.at

ÖBB-Infrastruktur AG

Ing. Wolfgang Zottl, ISM; Leitung Forschung & Entwicklung wolfgang.zottl@oebb.at, www.oebb.at

ASFINAG

DI Eva Hackl, Manager International Relations und Innovation eva.hackl@asfinag.at,

DI (FH) René Moser, Leiter Strategie, Internationales und Innovation rene.moser@asfinag.at, www.asfinag.at

Österreichische Forschungsförderungsgesellschaft mbH

DI Dr. Christian Pecharda, Programmleitung Mobilität Sensengasse 1, 1090 Wien christian.pecharda@ffg.at, www.ffg.at

Juni, 2014

Mechanisch konsistentes Schubfeldmodell für Bestandsbrücken ohne bzw. mit geringer Querkraftbewehrung

Schubfeldmodell

Ein Projekt finanziert im Rahmen der Verkehrsinfrastrukturforschung 2011 (VIF2011)

Juni 2014

🔊 AISIFI I INIAIG 🔰 bm💎 🎁

Impressum:

Herausgeber und Programmverantwortung: Bundesministerium für Verkehr, Innovation und Technologie Abteilung Mobilitäts- und Verkehrstechnologien Renngasse 5 A - 1010 Wien

ÖBB-Infrastruktur AG Praterstern 3 A - 1020 Wien

Autobahnen- und Schnellstraßen-Finanzierungs Aktiengesellschaft Rotenturmstraße 5-9 A - 1010 Wien

Für den Inhalt verantwortlich:

Technische Universität Wien Institut für Tragkonstruktionen - Betonbau Karlsplatz 13 A - 1040 Wien

Technische Universität Graz Institut für Betonbau Lessingstraße 25 A – 8010 Graz

Programmmanagement:

Österreichische Forschungsförderungsgesellschaft mbH Bereich Thematische Programme Sensengasse 1 A – 1090 Wien

Bundesministerium für Verkehr, Innovation und Technologie

Mechanisch konsistentes Schubfeldmodell für Bestandsbrücken ohne bzw. mit geringer Querkraftbewehrung

Schubfeldmodell

Ein Projekt finanziert im Rahmen der Verkehrsinfrastrukturforschung (VIF2011)

3BB

AutorInnen:

FFG

TU Wien Dipl.-Ing. Patrick HUBER Univ.-Prof. Dr.Ing. Johann KOLLEGGER

TU Graz Univ.-Prof. Dr.Ing. Viet Tue NGUYEN

Dr.-Ing. Duc Tung NGUYEN

Auftraggeber:

Bundesministerium für Verkehr, Innovation und Technologie ÖBB-Infrastruktur AG Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft

Auftragnehmer:

Technische Universität Wien Institut für Tragkonstruktionen – Betonbau Formale Vorgaben: Technische Universität Graz Institut für Betonbau

O AISIFII NIAIG bm

INHALT

1	Ein	leitur	ng	9			
	1.1	Vera	anlassung	9			
2	Lite	teraturstudie1 ²					
	2.1	Allge	jemeines	11			
	2.2	Que	erkrafttragverhalten	11			
	2.3	Bau	auteile ohne Querkraftbewehrung				
	2.3	.1	Tragmechanismen und Versagensart	13			
	2	2.3.1.1 Rissreibung oder Rissverzahnung		14			
	2	2.3.1.	.2 Dübelwirkung	16			
	2	2.3.1.	.3 Querkrafttraganteil der Druckzone	17			
	2	2.3.1.	.4 Rissübergreifende Spannungen in der Bruchprozesszone	18			
	2.3	.2	Sonstige Einflüsse	19			
	2	2.3.2.	.1 Maßstabseinfluss	19			
	2	2.3.2.	.2 Laststellung, Lastart	20			
	2	2.3.2.	.3 Vorspannung	20			
	2.3	.3	Modelle zur Berechnung der Querkrafttragfähigkeit	20			
	2	2.3.3.	.1 Übersicht	20			
	2.3.3.		.2 Simplified Modified Compression Field Theory (SMCFT)	21			
	2	2.3.3.	.3 Theorie des kritischen Biegeschubrisses (CSCT)	23			
	2	2.3.3.	.4 Modell nach Zink	25			
	2	2.3.3.	.5 Modell nach Zsutty	26			
	2	2.3.3.	.6 Weitere Ansätze	27			
	2.4	Bau	uteile mit Querkraftbewehrung	27			
	2.4	.1	Tragmechanismen und Versagensarten	27			
	2.4	.2	Querkraftmodelle	29			
	2	2.4.2.	.1 Übersicht	29			
	2	2.4.2.	.2 Fachwerkmodell mit variabler Druckstrebenneigung	31			
	2	2.4.2.	.3 Fachwerkmodell mit Betontraganteil	34			
	2	2.4.2.	.4 Mindestbewehrung				
3	Dat	tenba	anken mit Querkraftversuchen				
	3.1	Allge	jemeines	39			
	3.2	Verf	fügbare Querkraftdatenbanken				
	3.2	.1	ACI – DAfStb Datenbank mit Querkraftversuchen				
	3.2	.2	Datenbank von Collins, Bentz	40			

OAISIFIINIAIG bmV

	3.2.3	B Dat	tenbank von Yu, Baâant	40
	3.2.4	Dat	tenbank von Nakamura	41
	3.2.5	5 Dat	tenbank von Mihaylov et al	41
	3.3 E	Entwick	lung einer eigenen Datenbank	41
	3.3.1	Allg	gemeines	41
	3.3.2	2 Vor	gehensweise	42
	3.3	3.2.1	Einteilung der Datenbanken	42
	3.3	3.2.2	Literatursichtung	42
	3.3	3.2.3	Aufbau der Datenbank	43
	3.3	3.2.4	Ausschlusskriterien	44
	3.3	3.2.5	Charakteristika der Datenbanken	45
	3.3	3.2.6	Gewonnene Erkenntnisse	48
4	Norm	nenverg	gleich	48
	4.1 <i>A</i>	Allgeme	sines	48
	4.2 Ü	Übersic	ht über die Querkraftbemessung internationaler Normen	49
	4.2.1	Baı	uteile ohne Querkraftbewehrung	49
	4.2	2.1.1	Eurocode 2	49
	4.2	2.1.2	SIA 262	50
	4.2	2.1.3	ACI 318	51
	4.2	2.1.4	CSA A23.3	52
	4.2	2.1.5	fib Model Code 2010	52
	4.2.2	2 Bau	uteile mit Querkraftbewehrung	53
	4.2	2.2.1	Eurocode 2	53
	4.2	2.2.2	SIA 262	54
	4.2	2.2.3	ACI 318	55
	4.2	2.2.4	CSA A23.3	56
	4.2	2.2.5	fib Model Code 2010	57
	4.2	2.2.6	Zusammenfassung	57
	4.3 N Österre	Normen eich	entwicklung bezüglich der Querkraftbemessung von Betonbrücken	in 58
	4.3.1	Que	erkraftbemessung bei Stahlbetonbrücken	59
	4.3.2	2 Que	erkraftbemessung bei Spannbetonbrücken	61
	4.4 F	Parame	terstudie	64
	4.4.1	Inte	ernationale Normen	64
	4.4	4.1.1	Bauteile ohne Querkraftbewehrung	64

OAISIFIINIAIG bmV

		4.4.1.		2	Bauteile mit Querkraftbewehrung	69		
		4.4.2		Aktuelle und zurückgezogene österreichische Normen				
	4.5	5 Verg		gleich Normen mit Versuchen aus Datenbank				
		4.5	.1	Bau	Bauteile ohne Querkraftbewehrung			
	4.5.2			Bau	teile mit Querkraftbewehrung	83		
	4.6	3	Zus	amm	enfassung	87		
5		Unt	ersu	chun	g verschiedener Einflussparameter	90		
	5.1	1	Unte	ersuc	rsuchung des Einflusses der Belastung auf die Querkrafttragfähigkeit			
		5.1	.1	Einf	luss der Laststellung und Lastart	90		
		5.1.2		Einf	Einfluss der Bauteilbreite bei gleichmäßiger Belastung in Querrichtung			
		5.1	.3	Last	tverteilung bei punktförmiger Belastung	100		
		5	5.1.3.	1	Allgemeines	100		
		5	5.1.3.	2	Effektive Plattenbreite für Querkraft beff, v	100		
		5	5.1.3.	3	Versuche an Fahrbahnkragplatten	104		
		5 F	5.1.3. Platte	4 nbre	Überprüfung verschiedener Ansätze bezüglich der mitwirken ite für Querkraft beff,v	den 105		
		5.1	.4	Erke	enntnisse für die Nachrechnung von bestehenden Tragwerken	110		
	5.2 Einfluss			luss	einer Vorspannkraft	111		
		5.2.1		Allg	emeines	111		
		5.2.2		Trag	Tragverhalten bei Spannbetonbauteilen ohne Querkraftbewehrung1			
		5.2.3		Trag	gverhalten bei Spannbetonbauteilen mit Querkraftbewehrung	114		
		5	5.2.3.	1	Tragverhalten im ungerissenen Zustand	114		
		5.2.3.		2	Zoneneinteilung in Anlehnung an das Rissbild	114		
		5.2.3.		3	Einfluss des Vorspanngrades	115		
		5	5.2.3.	4	Einfluss geneigter Spannglieder	118		
6		Nur	neris	che	Simulationen	119		
	6.1	1	Ziels	setzu	Ing und Vorgehensweise	119		
	6.2	2	Nun	neris	ches Modell	120		
		6.2.1		Allg	emeines	120		
		6.2.2		Mate	erialmodell Beton	120		
		6.2.3		Mat	erialmodell Bewehrung	124		
		6.2.4		Disk	retisierung	125		
	6.3	6.3 Erge		ebnis	se der Untersuchungen	125		
		6.3.1		Para	ameterstudie an Einfeldbalken	128		
		6	5.3.1.	1	Allgemeines	128		

	6.3.1	.2	Auswertungen	130
	6.3.1	.3	Erkenntnisse	138
7	Modellb	oildun	g	
	7.1 Allg	jemei	ines	139
	7.2 Que	erkrat	fttragfähigkeit von Stahlbetonbauteilen ohne Schubbewehrung	139
	7.2.1	Ans	atz auf Basis der Querkrafttragfähigkeit der Druckzone	141
	7.2.2	Ver	gleich mit Versuchsergebnissen	151
	7.2.3	Aus	wirkungen auf eine Bemessung	154
	7.2.3	.1	Vorgehensweise	154
	7.2.3	.2	Anwendungsgrenzen	155
	7.3 Que	erkrat	fttragfähigkeit von Bauteilen mit geringer Schubbewehrung	155
	7.3.1	Allg	emeines	155
	7.3.2	Que	erkrafttragfähigkeit von Stahlbetonträgern	156
	7.3.3	Ver	gleich mit Versuchsergebnissen	163
	7.3.4	Que	erkrafttragfähigkeit von Spannbetonträgern	164
	7.3.4	.1	Unterteilung in Zonen	164
	7.3.4	.2	Vorgeschlagene Querkraftbemessung in den verschiedenen Zo	nen.165
	7.3.4	.3	Vergleich mit Versuchsergebnissen	167
8	Brücker	nnach	nrechnung	
	8.1 Allg	jemei	nes	
	8.2 Obj	ekt G	63	
	8.3 Spa	arche	nbachbrücke	
	8.3.1	Mat	erialkennwerte	
	8.3.2	Plar	nausschnitte – Bewehrung und Spannglieder	169
	8.3.3	Que	erkraftbemessung gemäß Originalstatik	171
	8.3.4	Nac	hrechnung gemäß ONR 24008 – Stufe 1	171
	8.3.4	.1	Belastung und Schnittgrößenermittlung	171
	8.3.4	.2	Querkraftnachweis gemäß Eurocode 2	172
	8.3.5	Nac	hrechnung auf Basis einer Einteilung in Zonen	174
	8.4 Dur	chlas	ss Seekirchen, km 300.238	177
	8.4.1	Mat	erialkennwerte	177
	8.4.2	Übe	rsichts- und Bewehrungsskizzen	177
	8.4.3	Nac	hrechnung	178
	8.4.3	.1	Belastung	178
	8.4.3	.2	Querkraftnachweis nach ÖNORM B4200-8:1971	179

O AISIFII NIAIG bm

8	3.4.3.3	Querkraftnachweis nach ÖNORM EN 1992-1-1 und ÖNORM B 1 180	992-1-1
8	3.4.3.4	Anwendung des eigenen Ansatzes	182
8.5	Brixenba	achbrücke, km 171.504	184
8.5	.1 Mat	erialkennwerte	184
8.5	.2 Übe	ersichts- und Bewehrungsskizzen	185
8.5	.3 Nac	chrechnung	185
8	3.5.3.1	Belastung	185
8	3.5.3.2	Querkraftnachweis nach ÖNORM B4200-8:1971	186
8	3.5.3.3	Querkraftnachweis nach ÖNORM EN 1992-1-1 und ÖNORM B 1 187	992-1-1
9 Zus	sammenfa	assung	189

bm

1 EINLEITUNG

1.1 Veranlassung

Die Zustandserfassung und -bewertung bestehender Brückentragwerke gewinnt an Bedeutung und wird immer mehr zum Kerngeschäft der täglichen Ingenieurpraxis. Das bestehende Brückennetz wird zusehends älter (siehe Abbildung 1.1), wodurch der Unterhaltungsaufwand in den nächsten Jahrzehnten sicher deutlich ansteigen wird. Neben der Brückenüberwachung und Brückenprüfung am Bauwerk selbst, stellt eine statische Nachrechnung ebenso einen wesentlichen Kernpunkt im Zuge der Bewertung der Tragfähigkeit eines bestehenden Brückenobjektes dar. Der Ablauf einer rechnerischen Tragfähigkeitsbewertung ist in Österreich gemäß österreichischer Nachrechnungsrichtlinie ONR 24008 [114] geregelt. Wenn aufgrund von Nutzungsänderungen, der Feststellung von Bauschäden oder ähnlichem, eine Neubeurteilung der Tragsicherheit erforderlich wird, wird gemäß ONR 24008 [114] eine stufenförmige Vorgehensweise vorgeschlagen. In der ersten Stufe erfolgt die Bewertung gemäß letztgültigem Normenstand inklusive der darin festgelegten Verkehrslastmodelle. In der zweiten Stufe darf zum einen auf Basis aktualisierter Daten auf der Einwirkungsseite der Teilsicherheitsfaktor für Eigengewichtslasten reduziert werden und zum anderen mit tatsächlichen am Bauwerk festgestellten Materialkennwerten auf der Widerstandsseite gerechnet werden.

Abbildung 1.1: Altersstruktur österreichischer Eisenbahn- und hochrangiger Straßenbrücken [1]

Bei Anwendung des letztgültigen Normenstandes kann es dabei immer wieder vorkommen, dass gerade beim Tragsicherheitsnachweis gegenüber Querkraftbeanspruchung rechnerische Defizite auftreten. Dies beruht im Wesentlichen auf zwei gravierenden Veränderungen:

bm

Abbildung 1.2: Erhöhung der Verkehrslasten: (a) Zunahme des zulässigen Gesamtgewichts gemäß KFG (b) Vergleich der einwirkenden Querkraft auf einfeldrigen Eisenbahnbrücken gemäß D4 und LM71

Das zulässige Gesamtgewicht nach dem Kraftfahrgesetz (KFG) erhöhte sich innerhalb der letzten 50 Jahre von 25 Tonnen auf 44 Tonnen (siehe Abbildung 1.2 (a)). Eine weitere Erhöhung des zulässigen Gesamtgewichtes auf 60 Tonnen wird rund um die Debatte um den sogenannten "Gigerliner" bereits seit längerem kontrovers diskutiert. Diese Entwicklung hat natürlich inzwischen Einklang in die Lastmodelle genommen. Der in Abbildung 1.2 (b) dargestellte Vergleich zwischen der einwirkenden Querkraft V_{Ed} zwischen einer Streckenklasse D4 und dem Lastmodell 71 mit α =1,21 zeigt, dass für einfeldrige Eisenbahnbrücken bei Anwendung der derzeit gültigen Lastannahmen gerade im Bereich kurzer Spannweiten eine deutliche Erhöhung der rechnerischen Querkraftbeanspruchung V_{Ed} auftritt.

Zusätzlich zu der veränderten Situation auf der Einwirkungsseite kam es in den letzten Jahrzehnten auch zu permanenten Modifikationen der Bemessungsnormen (siehe Abbildung 4.1), wobei die Regeln zur Bestimmung der Querkrafttragfähigkeit besonders betroffen waren. Die derzeit gültigen und für den Neubau angedachten Bemessungsregeln sind dabei zum Teil erheblich konservativer angesetzt als dies in der Vergangenheit der Fall war (siehe Abschnitt 4.3). Dies betrifft zum einen die Ansätze für die Bestimmung der Querkraftbewehrung für vorgespannte Brückentragwerke und zum anderen die Querkraftbemessungsregeln für Plattenbrücken und Fahrbahnplatten in Querrichtung ohne Schubbewehrung.

Dies wirft die Frage auf, wie mit Brücken, die den in derzeit gültigen Normenwerken verlangten Querkraftnachweis nicht erfüllen, umgegangen werden soll. Im Zuge dieses Forschungsvorhabens sollen durch gezielte Untersuchungen an Versuchsdatenbanken die derzeit gültigen Bemessungsansätze verifiziert und somit etwaige Tragreserven ausfindig gemacht werden. Es werden erste Ansätze gezeigt, wie man diese rechnerisch berücksichtigen kann. Da die Bemessungsregeln des Eurocode 2 [108,109,110,111] eigentlich ausschließlich für den Neubau angedacht sind, erscheint diese konservative Bemessung durchaus plausibel, um eine gewisse Robustheit der Bauteile zu gewährleisten. Für die Bewertung bereits bestehender Brückentragwerke scheint es jedoch sinnvoller auf verfeinerte Modellansätze zurückzugreifen, die das reale Querkrafttragverhalten realitätsnäher beschreiben können. Diese Modellvorstellungen sind zwar meist deutlich aufwändiger in der Berechnung, ergeben jedoch zumeist höhere Querkraftwiderstände. Dieser Aufwand relativiert sich, wenn man dadurch eine teure und unnötige Verstärkungsmaßnahme verhindern kann. Das im Zuge dieses Forschungsvorhabens erstellte Querkraftmodell soll dieser Aufgabe gerecht werden.

2 LITERATURSTUDIE

2.1 Allgemeines

Im vorliegenden Kapitel wird ein Überblick über die einzelnen Tragmechanismen, welche hauptsächlich für die Abtragung von Querkräften verantwortlich sind, gegeben. In weiterer Folge wird auf ausgewählte Querkraftmodelle näher eingegangen, welche einen oder mehrere Tragmechanismen als maßgebenden Anteil berücksichtigen. Dabei muss eine klare Trennung zwischen Bauteilen ohne und mit Querkraftbewehrung erfolgen, da in den meisten Fällen sowohl in der Literatur als auch in Normenwerken diese differenziert betrachtet werden. Diese Literaturstudie erhebt keinen Anspruch auf Vollständigkeit, da dies den Rahmen dieses Berichtes bei weitem sprengen würde. Es soll hier eine für die weiteren Arbeiten ausreichende Zusammenfassung geschaffen werden. Für nähere Informationen wird auf die jeweils zitierte Literatur bzw. Literaturstudie verwiesen.

2.2 Querkrafttragverhalten

Im ungerissenen Zustand eines Stahl- oder Spannbetonbauteiles kann das gleichzeitige Auftreten von Biege- und Querkraftbeanspruchungen durch die technische Biegelehre erfasst werden. Die dabei auftretenden Zug- und Druckspannungen (siehe Abbildung 2.1), die sogenannten Hauptspannungen, werden dabei vollständig vom Beton aufgenommen.

Außerhalb der Diskontinuitätsbereiche ergeben sie die Hauptspannungen unter Vernachlässigung der vertikalen Spannungen zu:

$$\sigma_{1/2} = \frac{\sigma_x}{2} \pm \sqrt{\frac{\sigma_x^2}{4} + \tau_{xz}^2}$$
(2.1)

Die Längsspannungen σ_x im Beton ergeben sich bei Gültigkeit der Bernoulli-Hypothese zu

$$\sigma_x = \frac{M_y}{I_y} \cdot z + \frac{N}{A}$$
(2.2)

Die Schubspannung τ_{xz} lässt sich anhand der bekannten Dübelformel ermitteln:

$$\tau_{xz} = \frac{V_z \cdot S(z)}{I_y \cdot b_w}$$
(2.3)

Bei Erreichen der Materialfestigkeiten des Betons bilden sich erste Risse, wodurch die technische Biegetheorie ihre Gültigkeit verliert. Der sich dadurch einstellende komplexe Kräftezustand muss nun mit anderen vereinfachten Modellen, welche im nächsten Abschnitt näher beschrieben werden, erfasst werden.

Abbildung 2.1: Hauptspannungen eines ungerissenen Stahlbetonbauteiles und Mohr'scher Spannungskreis

Aufgrund des komplexen Zusammenspiels der einzelnen Tragwirkungen und des Auftretens zu verschiedenen Belastungszeitpunkten wird deren Bedeutung für das Schubtragvermögen unter Forschern äußert kontrovers diskutiert. Diese Uneinigkeit hat dazu geführt, dass eine Vielzahl von Modellen existiert, welche einen oder mehreren die maßgebende Abtragung der Querkraft zuspricht. Abbildung 2 zeigt die an einem Schubriss wirkenden Querkrafttragmechanismen.

Abbildung 2: Querkrafttraganteile

Im Allgemeinen kann zwischen folgenden Tragmechanismen unterschieden werden:

- Schubspannungen in Druckzone (V_{cz})
- Rissübergreifende Zugspannungen in der Rissprozesszone (Vcr)
- Querkrafttragfähigkeit der Schubbewehrung (V_s)
- Rissreibung bzw. Rissverzahnung (V_{ag})
- Vertikalkomponente der Vorspannkraft (V_p)
- Dübelwirkung der Längsbewehrung (V_{da})
- Lastabtragung über direkte Druckstrebe/Sprengwerk/Bogen (V_{sp})

Die Frage, welcher Mechanismus am meisten zum Querkraftabtrag beiträgt, ist nach Jahrzehnten intensivster Forschung noch immer unbeantwortet. Bis dato konnte in Bezug auf die Querkrafttragfähigkeit von Stahl- und Spannbetonbauteilen kein weltweit anerkanntes und auf rein mechanischen Grundsätzen beruhendes Querkraftmodell formuliert werden.

2.3 Bauteile ohne Querkraftbewehrung

2.3.1 Tragmechanismen und Versagensart

Mit zunehmender Belastung wird am unteren Bauteilrand die Betonzugfestigkeit f_{ct} überschritten, wodurch sich senkrecht zu den Hauptzugspannungstrajektorien (siehe Abbildung 2.1) verlaufende Risse einstellen. Während im Bereich mit konstanten Biegemoment nahezu vertikale Risse entstehen, führt der Einfluss der Querkraft dazu, dass die entstehenden Risse im Schubfeld gegenüber der Vertikalen geneigt sind (siehe Abbildung 2.3).

Abbildung 2.3: Biegeschubversagen

bm

Das Querkraftversagen von Bauteilen ohne Querkraftbewehrung ist dadurch gekennzeichnet, dass sich ein "kritischer Biegeschubriss" ausbildet, welcher mit flacher Neigung in Richtung Lasteinleitung wandert. Das Erreichen der Schubrisslast führt zu einer Einschnürung der Druckzone, welche dann nicht mehr im Stande ist, die kombinierte Biege- und Querkraftbeanspruchung aufzunehmen und versagt somit schlagartig. Gleichzeitig mit der Zerstörung der Druckzone bildet sich entlang der Längsbewehrung ein horizontal verlaufender Längsriss. Abbildung 2.3 zeigt das typische Versagensbild eines Biegeschubbruchs. Durch die Kinematik des maßgebenden Biegeschubrisses werden unterschiedliche Tragmechanismen aktiviert, welche jedoch mit der klassischen technischen Biegelehre nicht mehr beschrieben werden können. Für den Querkraftabtrag sind im Wesentlichen die Biegedruckzone (V_{cz}), die Rissreibung/Rissverzahnung (V_{ag}), die Dübelwirkung der Längsbewehrung (V_{da}) , die in der Bruchprozesszone übertragbaren Zugspannungen (V_{cr}) verantwortlich. Bei profilierten Trägern mit dünnen Stegen ohne Querkraftbewehrung kann die Hauptzugspannung die Betonzugfestigkeit überschreiten, während der Zuggurt noch ungerissen bleibt. Das sogenannte Stegzugversagen führt ähnlich dem Biegeschubversagen zu einem schlagartigen Kollaps des Systems. Da in Österreich eine Mindestguerkraftbewehrung für Träger stets normativ gefordert war, ist dieser Versagenszustand hierzulande nicht praxisrelevant.

2.3.1.1 Rissreibung oder Rissverzahnung

Die Kinematik des "kritischen Schubrisses" lässt sich mit einer Rotation um die Schubrissspitze interpretieren, wodurch es neben der Rissöffnung ebenso zu einer Rissgleitung der beiden Rissufer kommt. Durch diese Scherbewegung können an den rauen Rissoberflächen Spannungen übertragen werden, welche im Wesentlichen von der Druckfestigkeit der Gesteinskörnung und der Zementsteinmatrix, der Kornform, der Sieblinie und dem Größtkorn des Zuschlages abhängen. Bei normalfesten Beton ist die Festigkeit der Gesteinskörnung in der Regel höher als jene der Zementmatrix, weshalb die sich einstellenden Risse die Gesteinskörnung umwandern und daher eine relativ raue Rissoberfläche bilden. Die Kraftübertragung erfolgt in diesem Fall dadurch, dass sich die herausgelösten Zuschläge mit dem gegenüberliegenden Rissufer verzahnen. Im Unterschied dazu wird bei hochfesten Betonen und Leichtbetonen die Gesteinskörnung bei Rissbildung durchtrennt. Die lokale Rauigkeit durch Kornverzahnung fällt in diesem Fall weitaus geringer aus, weshalb es zu einer verringerten Kraftübertragung an den Rissflächen kommt. In diesem Fall ist die Bezeichnung der Rissreibung zielführender.

Abbildung 2.4: Rissverzahnung nach Walraven [3]: (a) Risskinematik (b) Kontaktflächen zwischen Zementmatrix und Gesteinskörnung (c) Spannungszustand

Die wohl bekannteste Arbeit auf diesem Gebiet wurde von Walraven [3] verfasst. Er geht in seiner Modellvorstellung von einem Zweiphasenmodell aus, in welchen er die Rissverzahnung als Eindringen starrer kugelförmiger Zuschläge in die starr plastische Zementsteinmatrix annimmt (siehe Abbildung 2.4). In der allgemeinen mathematischen Modellbeschreibung geht Walraven von einer stochastischen Verteilung der für die Rissverzahnung verantwortlichen Kontaktflächen zwischen Zuschlag und Zementstein aus. Dies führt zu einer relativ komplexen Formulierung, weshalb er sein Modell ebenso in folgende vereinfachte lineare Zusammenhänge überführte:

$$\sigma_{cr} = \frac{f_{cw}}{20} - \left[1,35 \cdot w_{cr}^{-0,63} + \left(0,191 \cdot w_{cr}^{-0,522} - 0,15\right)f_{cw}\right]\Delta_{cr} \quad (\sigma_{cr} > 0)$$
(2.4)

$$\tau_{cr} = \frac{f_{cw}}{30} - \left[1,8 \cdot w_{cr}^{-0,80} + \left(0,234 \cdot w_{cr}^{-0,707} - 0,20\right)f_{cw}\right]\Delta_{cr} \quad (\tau_{cr} > 0)$$
(2.5)

mit w_{cr}, Δ_{cr} Rissöffnung bzw. Rissgleitung in mm f_{cw} Würfeldruckfestigkeit in N/mm²

Walraven schaffte somit eine theoretische Grundlage mit der es in Abhängigkeit der Rissöffnung w_{cr} und der Rissgleitung Δ_{cr} möglich war, die an den Rissufern übertragbaren Spannungen mathematisch zu beschreiben. Abbildung 2.5 zeigt eine Auswertung der in Gleichung 2.4 und 2.5 dargestellten vereinfachten linearen Zusammenhänge zwischen Rissöffnung, Rissgleitung, Normalspannung und Schubspannung in Abhängigkeit der Druckfestigkeit.

bm

Abbildung 2.5: Rissverzahnung: Schub- und Normalspannung τ_{cr} , σ_{cr} in Abhängigkeit von Rissgleitung Δ_{cr} und Rissöffnung w_{cr} gemäß des vereinfachten Modells nach Walraven [3]

Weitere Arbeiten auf diesem Gebiet wurden z.B. von Bažant & Gambarova (1983) [4] und Gambarova (1983) [5] verfasst.

In den Augen einiger Forscher stellt die Rissverzahnung oder Rissreibung den wesentlichen Anteil am Querkraftabtrag dar [6,7,8,9]. Die Schwierigkeit ergibt sich jedoch dadurch, dass für die Kenntnis der über die Rissufer übertragbaren Spannungen die Kenntnis der Rissgeometrie sowie der w_{cr} - Δ_{cr} Beziehung von Nöten ist. Darüber hinaus sind die Rissöffnungen und Rissgleitungen belastungsabhängig, wodurch die Vorhersage der am Versagenszeitpunkt auftretenden Rissspannungen an Komplexität gewinnen. Um dieser Aufgabe Herr zu werden, muss eine Vielzahl von Annahmen und Vereinfachungen getroffen werden, wodurch die Formulierung einfacher analytischer Formeln für den Querkafttraganteil der Rissverzahnung nur sehr schwer möglich ist.

2.3.1.2 Dübelwirkung

Die Dübelwirkung wurde bereits in zahlreichen wissenschaftlichen Arbeiten behandelt [10,11,12]. Um eine Dübelwirkung aktivieren zu können, bedarf es einer vertikalen Verschiebung der Rissufer auf Höhe der Längsbewehrung. Diese ergibt sich beim schlagartigen Versagen der Druckzone, weshalb sich zur gleichen Zeit ein horizontaler Dübelriss entlang der Längsbewehrung bildet (siehe Abbildung 2.3). Die Längsbewehrung stützt sich dabei auf die Betondeckung ab, weshalb in vielen Modellvorstellungen eine elastische Bettung der Bewehrungsstäbe angenommen wird. Dadurch werden zwischen den Bewehrungsstäben Zugspannungen im Beton erzeugt, welche bei Erreichen der Zugfestigkeit zu

den charakteristischen Längsrissen entlang der Bewehrung führen. Die Dübelwirkung hängt daher im Wesentlichen von der Betonzugfestigkeit ab.

Abbildung 2.6: Dübelwirkung der Längsbewehrung: (a) Dübelriss und Bettungsspannungen (b) Betonzugspannungen auf Höhe der Längsbewehrung

Ein vielfach verwendeter empirischer Ansatz wurde von Baumann [12] entwickelt, in dem er die wesentlichsten Einflüsse anhand einer umfangreichen Versuchsserie verifizierte:

$$V_{d} = f_{ct} \cdot b_{n} \cdot d_{s} \cdot \frac{14.3}{\sqrt[3]{f_{cw}}}$$
(2.6)

Mit

 f_{ct}

Betonzugfestigkeit

b_n Nettobreite

*d*_s Stabdurchmesser

 f_{cw} Würfeldruckfestigkeit (200mm)

Neben der Zugfestigkeit des Betons spielen somit die Nettobreite des Querschnittes auf Höhe der Längsbewehrung und der Stabdurchmesser eine zusätzliche Rolle.

Da die Zugfestigkeit des Betons den Haupteinfluss darstellt und diese bekannterweise starken Streuungen unterworfen ist, gilt dies auch für den Querkrafttraganteil der Dübelwirkung. Darüber hinaus kann dieser Tragmechanismus zumeist erst beim Auftreten des "kritischen Schubrisses" aktiviert werden und ist zu diesem Zeitpunkt nicht mehr in der Lage das drohende Querkraftversagen zu verhindern. Des Weiteren ist bei den in der Praxis üblichen Längsbewehrungsgraden der Tragmechanismus generell von untergeordneter Bedeutung.

2.3.1.3 Querkrafttraganteil der Druckzone

Da für das Biegeschubversagen die Einschnürung der Druckzone charakteristisch ist, fällt der Traganteil der ungerissenen Druckzone in vielen Modellvorstellungen besonders ins Gewicht [13,14,15,16,17, 18,19].

bm

Abbildung 2.7: Querkrafttraganteil der Druckzone: (a) in der Literatur angenommen Spannungsverteilungen (b) Vertikalkomponente einer geneigten Druckgurtkraft

Die Querkrafttragfähigkeit der Druckzone kann dabei auf verschiedene Arten berücksichtigt werden: Bei Fachwerk bzw. Bogen-Zugband Modellen mit geneigtem Druckgurt (siehe Abbildung 2.7(b)) kann die dadurch entstehende Vertikalkomponente als zusätzlicher Tragmechanismus angesehen werden.

Die andere und öfter verwendete Methode ist jene, dass der durch die auftretende Biegeund Querkraftbelastung erzeugte Spannungszustand in der Druckzone maßgebend für die Querkrafttragfähigkeit von Bauteilen ohne Querkraftbewehrung ist. Dabei kommen verschiedene Annahmen von Spannungsverteilungen und Bruchkriterien zum Einsatz (siehe Abbildung 2.7(a) bzw. Abschnitt 2.3.2.3). Die beiden Vorgehensweisen sind vom Prinzip her ähnlich. Die Schubtragfähigkeit hängt daher wesentlich von der Höhe der Druckzone ab. Diese wird in den meisten Fällen unter der Annahme vom Ebenbleiben der Querschnitte (Navier-Bernoulli Hypothese) und linear elastischem Materialverhalten des Betons berechnet, da ohne äußere Normalkraft die Druckzonenhöhe belastungsunabhängig bestimmt werden kann. Bei Bauteilen mit äußerer Normalkraft und/oder Vorspannung hängt die Nulllinie von der Belastung ab und muss daher iterativ bestimmt werden.

Darüber hinaus wird die Querkrafttragfähigkeit manchmal über einen Druckbogen/Sprengwerk beschrieben, welches in seiner Grundidee der Tragfähigkeit der Druckzone entspricht.

2.3.1.4 Rissübergreifende Spannungen in der Bruchprozesszone

Gerissener Beton kann bei sehr kleinen Rissweiten weiterhin Zugspannungen über diese hinweg übertragen. Daher ist dieser Mechanismus rein auf die Bruchprozesszone beschränkt. Wie Messungen [33] ergeben haben, ist der dadurch entstehende Querkrafttraganteil vernachlässigbar klein, weshalb somit auf eine weitere Betrachtung verzichtet wird.

bm

2.3.2 Sonstige Einflüsse

2.3.2.1 Maßstabseinfluss

Seit den umfangreichen experimentellen Untersuchungen von Leonhardt [20] und Kani [21] in den 60er Jahren des vorigen Jahrhunderts ist bekannt, dass bei Bauteilen ohne Querkraftbewehrung die flächenbezogene Schubtragfähigkeit mit zunehmender Bauteile abnimmt (siehe Abbildung 2.8).

Abbildung 2.8: Maßstabseffekt bei Bauteilen ohne Querkraftbewehrung (entnommen aus [91])

Dieser als "Size-Effekt" bekannte Einfluss ist vor allem von besonderem Interesse, da in der Vergangenheit bei der Bemessung von Plattentragwerken ohne Bügelbewehrung kein Einfluss der Bauteilhöhe berücksichtigt wurde. Um den Maßstabseinfluss zu erklären, wurden bereits viele Theorien veröffentlicht, wobei sie sich im Wesentlichen in zwei Gruppen kategorisieren lassen:

- Größere Bauteile verfügen über weitere Risse und größeren Rissabständen, weshalb die Rissverzahnung abnimmt und daher auch die Querkrafttragfähigkeit [22].
- Experimentelle Untersuchungen haben gezeigt, dass ein Zusammenhang zwischen Rissentwicklung und Bauteilgröße besteht, was sich wiederum mit der höheren Energiefreisetzungsrate von größeren Bauteilen erklären lässt. Deshalb wird der "Size-Effekt" auch mit Hilfe der Bruchmechanik beschrieben [23]. Darüber hinaus wird den in der Bruchprozesszone rissübergreifenden Spannungen, welche auch einen Beitrag zum Abtrag von Querkräften liefern können, ebenfalls ein Einfluss der Bauteilhöhe zugeschrieben [16].

Nichtsdestotrotz wird der Maßstabseinfluss in allen Modellen und auch Normenwerken auf empirischen Wege miteinbezogen, die Erklärung jedoch beruht prinzipiell auf den zuvor erläuterten Vorstellungen.

2.3.2.2 Laststellung, Lastart

Mit gezielten experimentellen Untersuchungen konnten Leonhardt und Walther [20] in Deutschland und Kani [24] in Kanada zeigen, dass die Laststellung bei punktförmiger Belastung bzw. die Spannweite bei gleichförmiger Belastung eine wesentliche Rolle bei der Formulierung der Querkrafttragfähigkeit bei Bauteilen ohne und mit Schubbewehrung spielt. Für nähere Details wird auf Abschnitt 5.1.1 verwiesen.

2.3.2.3 Vorspannung

Eine Vorspannkraft wirkt sich bekannterweise positiv auf die Rissbildung aus, d.h. einerseits findet die Erstrissbildung später statt und andererseits wird auch die Schubrissbildung verzögert. Der ungerissene Bereich wird durch das Aufbringen von Vorspannkräften vergrößert, was wiederum die Bildung einer direkten Druckstrebe unter Umstanden deutlich verbessert. Deshalb wird in einigen Modellvorstellungen bei vorgespannten Bauteilen eine Bogen- bzw. Sprengwerkwirkung zugetraut. Einen weiteren Einfluss nimmt die Vorspannung auf die Druckzonenhöhe, die bei vorgespannten Bauteilen wesentlich vom vorherrschenden Belastungszustand abhängt. Umstritten ist jedoch der Querkraftanteil, welcher durch die Vertikalkomponente einer geneigten Spannkraft entsteht. Weitere Details zum Thema Einfluss der Vorspannkraft auf die Querkrafttragfähigkeit werden in Abschnitt 5.2 erläutert.

2.3.3 Modelle zur Berechnung der Querkrafttragfähigkeit

2.3.3.1 Übersicht

In den letzten Jahrzehnten wurde eine Vielzahl von analytischen Modellen für Bauteile ohne Querkraftbewehrung veröffentlicht. Dieses Kapitel soll einerseits einen Überblick über verschiedene Modelle geben und andererseits eine Kategorisierung der einzelnen Modelle vornehmen. Dabei wird besonders auf jene eingegangen, welche bereits in Bemessungsnormen verwendet werden.

Die unterschiedlichen Querkraftmodelle lassen sich einerseits auf Basis ihres maßgebenden Traganteiles einteilen, wobei es jedoch auch Modelle gibt, welche mehrere Mechanismen in Betracht ziehen. Andererseits kann eine Unterteilung getroffen werden, ob der Ansatz auf physikalischen bzw. mechanischen Überlegungen basiert oder nur rein empirisch erfolgte. Darüber hinaus kann eine Kategorisierung anhand der verwendeten Methode getroffen werden (z.B: Bruchmechanik, nichtlineare Finite-Element Methode usw.).

2.3.3.2 Simplified Modified Compression Field Theory (SMCFT)

Die "Modified Compression Field Theory" (MCFT) [27] stellt eine Erweiterung der klassischen Druckfeldmodelle dar, wie sie bereits von Ritter [28] oder Mörsch [29] vor über 100 Jahren veröffentlicht wurden. Während zu Beginn des 19. Jahrhunderts noch von einer Druckstrebenneigung von 45°, eine Vernachlässigung der Verträglichkeitsbeziehungen und spannungsfreie Risse, angenommen wurden, erweiterten Vecchio und Collins [27] genau diese Punkte in ihrem Modell. Abbildung 2.9 zeigt eine Zusammenstellung der darin verwendeten Gleichgewichtsbedingungen, geometrischen Beziehungen sowie die verschiedenen Materialmodelle für Beton und Bewehrung. Die Formulierung des Materialverhaltens des Betons auf Druck und Zug unter kombinierter Axial- und Schubbeanspruchung wurde empirisch anhand von einer Vielzahl von Scheibenversuchen ermittelt. Des Weiteren wird angenommen, dass die Hauptrichtungen der Dehnungen und mittleren Spannungen zusammenfällt. Die Dehnungen werden über die Risse hinweg gemittelt, auf eine Berücksichtigung der Dübelwirkung wird verzichtet. Die Querkrafttragfähigkeit gemäß MCFT hängt dabei stark von den im Riss übertragbaren Schubspannungen (Rissverzahnung) ab, welche in Anlehnung an die Arbeiten von Walraven [3] in Abhängigkeit der Rissöffnung begrenzt werden.

Abbildung 2.9: Formelapparat der Modified Compression Field Theory (entnommen aus [27])

Die gesamte Formulierung der MCFT ist analytisch nicht lösbar und daher für einfache Bemessungsaufgaben nicht anwendbar. Sie findet daher nur in computerbasierten Modellierungen Anwendung. Um der Praxis dieses Modell jedoch ebenso zugänglich zu machen, vereinfachte *Bentz* [8] die MCFT zur "Simplified Modified Compression Field Theory" (SMCFT). Die Querkrafttragfähigkeit gemäß SMCFT ergibt sich nach Gleichung 2.7 zu:

$$V_{c} = \beta \cdot \sqrt{f_{c}} \cdot b_{w} \cdot z$$
mit β
Abminderungsfaktor gemäß Gleichung (2.8)
$$b_{w}$$
Kleinste Querschnittsbreite in der Zugzone
$$z = 0.9d$$
Innerer Hebelsarm
 $\sqrt{f_{c}} = f_{ct} < 8 \text{ N/mm}^{2}$
Zugfestigkeit
$$(2.7)$$

Der Faktor β besteht dabei aus dem Produkt aus einem sogenannten Dehnungsfaktor, welcher den Einfluss des Dehnungszustandes berücksichtigt und eines Faktors zur Berücksichtig der Bauteilhöhe:

$$\beta = \frac{0.4}{1 + 1500 \cdot \varepsilon_x} \cdot \frac{1300}{1000 + s_{xe}}$$
(2.8)

bm

mit \mathcal{E}_x Längsdehnung gemäß Gleichung 2.9

s_{xe} Rissabstand gemäß Gleichung 2.10

Der Dehnungsterm in Gleichung (2.8) berücksichtigt, dass mit zunehmender Belastung die Dehnung in der Längsbewehrung und damit verbunden auch die Rissöffnung zunehmen. Die dadurch verbundene Abnahme der Rissreibung/Rissverzahnung führt wiederum zu einer Verringerung der Querkrafttragfähigkeit. Zur Vereinfachung wird die Dehnung auf halber Höhe der statischen Nutzhöhe z/2 berechnet:

$$\varepsilon_{x} = \frac{\frac{M_{Ed}}{z} + V_{Ed} - V_{p} + 0.5 \cdot N_{Ed} - A_{p} \cdot \sigma_{p0}}{2 \cdot \left(E_{s} \cdot A_{s} + E_{p} \cdot A_{p}\right)}$$
(2.9)

Die SMCFT führt den Maßstabseinfluss auf den Rissabstand zurück, welcher für Bauteile ohne Querkraftbewehrung direkt proportional mit der Nutzhöhe ist, d.h. $s_{xe} \propto d$. Darüber hinaus verfügen größere Bauteile über weitere Risse, weshalb auch die Rissverzahnung in diesem Kontext eine Rolle spielt. Daher wird über den Parameter s_{xe} ebenso die Rissrauigkeit berücksichtigt, welche maßgebend vom Größtkorndurchmesser d_g beeinflusst wird. Hierdurch ergibt sich der effektive Rissabstand s_{xe} zu:

$$s_{xe} = \frac{35 \cdot s_x}{d_g + 16} = \frac{31, 5 \cdot d}{d_g + 16} \le 0,85 \cdot z$$
(2.10)

Da bei hochfesten Betonen und Leichtbetonen die Festigkeit der Zementmatrix höher ist, als die der Gesteinskörnungen, wird diese bei Rissbildung durchtrennt und damit die Rissverzahnung verringert. Deshalb wird für Druckfestigkeiten ab $f_c=70$ N/mm² in Gleichung 2.10 der Parameter $d_g = 0$ gesetzt.

Da der Querkraftwiderstand gemäß SMCFT belastungsabhängig ist, d.h. es wird eine M-V-N Interaktion berücksichtigt, ist es notwendig einen Bemessungsschnitt zu definieren. Für Einzellasten wird daher die Betrachtung im Abstand z von der Lasteinleitung bzw. für Gleichlasten im Abstand z vom Auflagerrand vorgeschlagen.

Die SMCFT wird sowohl in der kanadischen Betonbaunorm CSA A23.3 [102], der amerikanischen Brückenbaunorm AASHTO LRFD [103] sowie im fib Model Code 2010 [101] für die Querkraftbemessung für Bauteile ohne Querkraftbewehrung angewandt.

2.3.3.3 Theorie des kritischen Biegeschubrisses (CSCT)

Nach Muttoni [7] hängt die Querkrafttragfähigkeit von Bauteilen ohne Schubbewehrung wesentlich von der Rissweite und der Rissrauigkeit ab:

$$V_c = \sqrt{f_c} \cdot b_w \cdot d \cdot f(w, d_g)$$
(2.11)

Die Rissweite wiederum ist direkt proportional zum Produkt der Längsdehnung ε in einem definierten Kontrollpunkt mit der statischen Nutzhöhe *d*, d.h. W $\propto \varepsilon \cdot d$. Der Maßstabseffekt wird daher auf die größeren Rissweiten bei größeren Bauteilen zurückgeführt. Die Lage des Kontrollpunktes für Bauteile, welche mit einer großen Einzellast belastet werden, ist in Abbildung 2.10 ersichtlich.

Abbildung 2.10: Theorie des kritischen Biegeschubrisses: Bemessungsschnitt und Annahme der Längsdehnungen

Unter der Annahme vom Ebenbleiben der Querschnitt sowie eines linear elastischen Materialverhalten des Betons kann die Längsdehnung in Kontrollpunkt folgendermaßen berechnet werden:

$$\varepsilon = \frac{M_{Ed}}{A_s \cdot E_s \cdot \left(d - \frac{c}{3}\right)} \cdot \frac{0.6 \cdot d - c}{d - c}$$
(2.12)

mit

$$c = d \cdot \rho \cdot \alpha_s \left(\sqrt{1 + \frac{2}{\rho \cdot \alpha_s}} - 1 \right)$$
(2.13)

Hierdurch ergibt sich nach einer Regressionsanalyse folgende analytische Formel für die Berechnung der Querkrafttragfähigkeit für Bauteile ohne Bügelbewehrung und ohne Normalkraft:

$$V_c = \frac{1}{6} \cdot \frac{2}{1 + 120 \cdot \frac{\varepsilon \cdot d}{16 + d_g}} \cdot \sqrt{f_c} \cdot b_w \cdot d$$
(2.14)

Ähnlich der SMCFT wird auch bei diesen Modell eine Abminderung der Rissverzahnung bei hochfesten Beton bzw. Leichtbetonen unterstellt, welche durch eine Annahme von $d_g=0$ ab einer Druckfestigkeit f_c=60N/mm² in Gleichung (2.14) Berücksichtigung findet.

Unter der Annahme, dass die Längsdehnung ϵ , welche die Rissöffnung steuert, auch mit dem Ausnützungsgrad der Biegetragfähigkeit m_{Ed}/m_{Rd} korreliert, konnte ein vereinfachtes Modell in die SIA 262 [105] eingeführt werden:

ASFINAG

$$V_{Rd,c} = \frac{0,2}{1+0,022 \cdot d \cdot \frac{m_{Ed}}{m_{Pd}}} \cdot \sqrt{f_{ck}} \cdot b_w \cdot d$$
(2.15)

Die Theorie des kritischen Biegeschubrisses spricht der Abtragung über einen Druckbogen durch Ausfall der anderen Tragmechanismen eine wesentliche Bedeutung zu. Der Tragmechanismus des Druckbogens wird jedoch maßgebend von der Lage des kritischen Biegeschubrisses, seiner Rissweite und seiner Rissrauigkeit beeinflusst.

2.3.3.4 Modell nach Zink

Zink [16] nimmt in seinem Ansatz an, dass die in der Druckzone auftretenden Schubspannungen in Kombination mit den in der Bruchprozesszone übertragbaren Normalspannungen hauptverantwortlich für die Querkrafttragfähigkeit eines Bauteiles ohne Querkraftbewehrung sind. Für die Ermittlung der aufnehmbaren Querkraft in der Druckzone geht er von einer parabelförmigen Verteilung der Schubspannungen mit einer Völligkeit von 2/3 aus, bei welcher das Maximum in der Risswurzel liegt (siehe Abbildung 2.11). Daher ergibt sich die Hauptzugspannungen in der Nulllinie zu $\sigma_1 = \tau_{xz}$.

Abbildung 2.11: Modell nach Zink: Spannungen in der Druckzone

Integriert man die Schubspannungen über die Druckzone c so ergibt sich folgender Grundwert für die Querkrafttragfähigkeit:

$$V_{c,0} = \frac{2}{3} \cdot b_w \cdot c \cdot f_{ct}$$
(2.16)
mit $f_{ct} = 2,12 \cdot \ln\left(1 + \frac{f_c}{10}\right)$ Zugfestigkeit des Betons gemäß [30]

Die Ermittlung der Druckzonenhöhe erfolgt analog zu Gleichung 2.13.

Ein Vergleich mit der nach Gleichung 2.16 ermittelten Schubtragfähigkeit mit Versuchswerten hat gezeigt, dass der Einfluss der Bauteilhöhe sowie der Schubschlankheit nicht richtig erfasst wird. Deshalb wurde Gleichung 2.16 um zwei empirische Faktoren erweitert:

$$V_c = \frac{2}{3} \cdot b_w \cdot c \cdot f_{ct} \cdot \left(\frac{5 \cdot l_{ch}}{d}\right)^{0.25} \cdot \left(\frac{5 \cdot d}{a}\right)^{0.25}$$
(2.17)

🔊 AISIFI I INIAIG 🔰 bm🔍 🚺

mit

$$\begin{split} l_{ch} &= \frac{E_c \cdot G_f}{f_{ct}^2} & \text{Charakteristic}\\ G_f &= \begin{cases} 0,0307\text{mm} \cdot f_{ct} & \text{für } \mathbf{f}_{ct} \leq 80MPa \\ 0,143\text{MPa} & \text{für } \mathbf{f}_{ct} > 80MPa \end{cases} & \text{Bruchenergies} \end{split}$$

Charakteristische Länge nach Hillerborg

е

Den Maßstabseffekt führt Zink auf die in der Bruchprozesszone übertragbaren Spannungen zurück. Hierfür bedient er sich der charakteristischen Länge Ich von Hillerborg [31]. Er führt somit den Maßstabseinfluss auf bruchmechanische Vorgänge zurück. Mit dem zweiten Faktor wird die Abnahme der Querkrafttragfähigkeit mit zunehmender Schubschlankheit a/d (M-V-Interkation) in Betracht gezogen, welche Zink mit der reduzierten Mitwirkung des Betons in der Zugzone mit größer werdenden a/d Verhältnis begründet.

2.3.3.5 Modell nach Zsutty

Der Ansatz von Zsutty [32] soll an dieser Stelle kurz erläutert werden, da sein Grundgerüst die Basis des empirischen Querkraftmodelles des Eurocode 2 darstellt. Zsutty wählte eine rein empirische Vorgangsweise, worin der Längsbewehrungsgrad ρ , die Schubschlankheit a/d und die Druckfestigkeit f_c die wesentlichsten Parameter darstellen:

$$V_{c} = k \cdot f_{c}^{b1} \cdot \rho^{b2} \cdot (d/a)^{b3} \cdot b_{w} \cdot d$$
(2.18)

Die unbekannten Konstanten k, b₁, b₂ und b₃ wurden anhand einer multiplen Regressionsanalyse bestimmt. Die Faktoren b_1 bis b_3 ergaben dabei ca. den Werte 1/3. Daher bestimmte er in einer zweiten Regressionsanalyse basierend auf

$$V_c = k \cdot \left(f_c \cdot \rho \cdot \frac{d}{a} \right)^{\frac{1}{3}} \cdot b_w \cdot d$$
(2.19)

den Vorfaktor k zu 2,14, weshalb schlussendlich folgende Gleichung für schubschlanke Bauteile (a/d>2,5) ohne Schubbewehrung entstand:

$$V_c = 2,14 \cdot \left(f_c \cdot \rho \cdot \frac{d}{a} \right)^{\frac{1}{3}} \cdot b_w \cdot d$$
(2.20)

Das Modell basiert auf keinerlei mechanischer Überlegung und wurde rein aus Versuchsdaten empirisch bestimmt.

Nach Einführung eines zusätzlichen Maßstabsfaktors und Neukalibrierung des Vorfaktors wurde diese Formulierung in den Model Code 1990 [100] übernommen und bildet seit Einführung des Eurocode 2 [108,109,110,111] die Querkraftbemessung für Bauteile ohne Schubbewehrung in Österreich (siehe Kapitel 4).

🔊 AISIFI I INIAIG 🔰 bm🕵 🚺

2.3.3.6 Weitere Ansätze

Neben den hier angeführten Querkraftmodellen existiert noch eine Vielzahl von anderen Ansätzen, welche hier nur kurz exemplarisch angeführt werden:

- Kamm- und Zahnmodelle: Die Biegerisse unterteilen das Bauteil in einzelne Betonzähle, welche in der Druckzone als eingespannt betrachtet werden. Durch die Formulierung von Gleichgewichtsbedingungen und Verträglichkeitsbedingungen am Zahn war es Reineck [34] möglich, die einzelnen Tragmechanismen am Zahn abzubilden. Das erste Modell dieser Art wurde von Kani [21] formuliert.
- Modelle auf Basis der Bruchmechanik: Bažant und Yu [35] führen den Querkraftwider-• stand von Bauteilen ohne Bügelbewehrung auf ein Druckversagen in der Rissspitze zurück. Das Grundgerüst ihres Modelles stellt dabei der energetische Maßstabseffekt von Bažant [36] dar.
- Druckzonenmodelle: Neben den Modell nach Zink [16] wurden noch zahlreiche weitere Modelle veröffentlicht, welche der Druckzone den Haupttraganteil zutrauen Querkrafttragfähigkeit [13,14,15,17,19]. Die wird dabei maßgebend vom vorherrschenden Spannungszustand oberhalb der Nulllinie bestimmt.
- Bogenmodelle beruhen im Wesentlichen auf derselben Überlegung wie die "Druckzonemodelle", d.h. die Querkraft wird wie der Name schon sagt über einen Druckbogen zum Auflager geleitet [18, 37]. Die Querkrafttragfähigkeit wird damit wesentlich von der Tragkapazität des Druckbogens bestimmt.
- Numerische Modelle: Die Querkrafttragfähigkeit lässt sich auch mittels numerischer • Methoden, wie z.B. der Finiten Elemente Methode bestimmen. Dabei kommen zum Teil auch die hier bereits angeführten Modelle zum Einsatz (z.B. MCFT [27]). Durch eine detailiierte Modellierung des Materialverhaltens von Beton und Betonstahl können mithilfe nichtlinearer Finite Elemente Methoden zum Teil sehr gute Ergebnisse erzielt werden. Die korrekte Formulierung sämtlicher Tragmechanismen stellt jedoch auch hier die größte Herausforderung dar.

2.4 Bauteile mit Querkraftbewehrung

2.4.1 Tragmechanismen und Versagensarten

Wie in Abschnitt 2.3 erläutert, führt das instabile Risswachstum bei Schubrissbildung bei schlanken Bauteilen ohne Querkraftbewehrung in der Regel sofort zum Versagen. Durch Anordnung einer Querkraftbewehrung lässt sich dieses spröde Verhalten verhindern. Nach Erreichen der Schubrisslast ist noch eine zum Teil erhebliche Laststeigerung möglich, da

die im geneigten Riss freiwerdenden Zugkräfte auf die Bewehrung umgelagert werden können. Durch Verbundwirkung können wiederum Zugspannungen auf den Beton übertragen werden, wodurch sich bei Laststeigerung weitere Schubrisse bilden. Das dadurch entstehende Rissbild veranlasste Ritter 1899 [28] und Mörsch 1908 [29] den inneren Kraftfluss bezüglich der Abtragung von Querkräften mithilfe eines Fachwerkmodells abzubilden (siehe Abbildung 2.12).

Abbildung 2.12: Fachwerkmodell nach Ritter [28]

Dabei wird angenommen, dass die Zugspannungsfelder bzw. Zugstreben zur Gänze von Bewehrung und die Druckspannungsfelder bzw. Druckstreben, welche sich zwischen den Schubrissen ausbilden, vom Beton aufgenommen werden. Nach der klassischen Fachwerkanalogie [29] wird die Neigung dieser Druckstreben mit 45° angesetzt. Spätestens jedoch seit den umfangreichen experimentellen Untersuchungen von Leonhardt und Walther [20] zu Beginn der 60er Jahre des letzten Jahrhunderts ist bekannt, dass das Fachwerkmodell mit um 45° geneigten Druckstreben nicht in der Lage ist, dass reale Querkrafttragverhalten von Bauteilen mit Schubbewehrung wiederzugeben. Sie konnten mit ihren Versuchen zeigen, dass sich die Schubrisse und somit auch die Druckstreben auch deutlich flacher als 45° ausbilden können. Messungen der Dehnungen in vertikaler Richtung bewiesen auch, dass die nach klassischer Fachwerksanalogie berechneten Bügelspannungen sich nicht in diesem Ausmaß einstellten. Offensichtlich genügt es nicht, den gesamten Querkraftabtrag der Bügelbewehrung zuzuschreiben, es muss also auch dem Beton eine Querkrafttragfähigkeit bei Bauteilen mit Querkraftbewehrung zugetraut werden. Dieser sogenannte Betontraganteil basiert im Wesentlichen auf denselben Tragmechanismen wie bei Bauteilen ohne Schubbewehrung (siehe Abschnitt 2.3.1). Ein Überblick hinsichtlich der Berücksichtigung und Bedeutung dieser Traganteile bei Bauteilen mit Querkraftbewehrung wird bei den verschieden Ansätzen im folgenden Abschnitt 2.4.2 gegeben.

28

Abbildung 2.13: Versagensarten bei Bauteilen mit Querkraftbewehrung

Bei Bauteilen mit Querkraftbewehrung lassen sich im Wesentlichen drei Versagensarten beobachten:

- Biegeschubversagen: Bei sehr geringen Querkraftbewehrungsgehalt kann sich ähnlich wie bei Bauteilen ohne Bügelbewehrung ein flach in die Druckzone vordringender Biegeschubriss bilden (siehe Abbildung 2.3). Wenn ausreichend Schubbewehrung angeordnet wurde, um die im Biegeschubriss freiwerdende Zugkraft aufzunehmen, führt das Fließen bzw. in weiterer Folge das Erreichen der Zugfestigkeit der vertikalen Bewehrung zum instabilen Rissfortschritt in die Druckzone und somit zum Versagen der Struktur.
- Zugversagen der Querkraftbewehrung: Bei zu schwacher Schubbewehrung wird durch eine massive Rissöffnung in einem Schubriss die Zugfestigkeit der Bügelbewehrung erreicht (siehe Abbildung 2.13 (a)). Durch das Abreißen der Bügel kann keine Umlagerung auf andere Tragmechanismen mehr stattfinden und die Tragfähigkeit des Systems ist erschöpft.
- Druckstrebenbruch: Bei stark profilierten Trägern mit dünnen hoch schubbewehrten Stegen kann das Versagen dadurch gekennzeichnet sein, dass die sich zwischen den Schubrissen ausbildenden Druckstreben die Druckfestigkeit erreichen, bevor die Querkraftbewehrung zum Fließen beginnt. Der Versagensmechanismus ist durch ein plötzliches Abplatzen des Stegbetons geprägt (siehe Abbildung 2.13 (b)). Bei dünnen Stegen mit Hüllrohren ist das Absprengen des Betons meistens auf Höhe des Spannglieds konzentriert [38].

2.4.2 Querkraftmodelle

2.4.2.1 Übersicht

Aufbauend auf den Pionierarbeiten von Ritter [28] und Mörsch [29] basiert die Querkraftbemessung von Spann- und Stahlbetonbauteilen mit Querkraftbewehrung noch heute weitgehend auf dem Fachwerkmodell. Die im Laufe der Jahrzehnte durchgeführten Modifikation ergaben zwei verschiedene Modellvorstellungen:

• Fachwerkmodell mit variabler Druckstrebenneigung – Plastizitätstheorie:

Die Basis dieses Ansatzes stellt der untere Grenzwertsatz der Plastizitätstheorie dar, der besagt, dass jede Belastung, zu der sich ein stabiler und statisch zulässiger Spannungszustand angeben lässt, nicht höher als die Traglast liegt. Umgemünzt auf das Fachwerkmodell mit variabler Druckstrebenneigung θ bedeutet dies, dass der Querkraftwiderstand der Bügelbewehrung des unter θ geneigten Schnittes im Gleichgewicht mit der unter θ geneigten Druckstrebe steht. Die einwirkende Querkraft *V* muss somit kleiner sein als der Widerstand der Querkraftbewehrung *V*_s und muss gleichzeitig das Stegbruchkriterium V_{max} erfüllen:

$$V \le \begin{cases} V_s \\ V_{\text{max}} \end{cases}$$
(2.21)

Ein über die Querkraftbewehrung hinausgehender Betontraganteil V_c findet keine Berücksichtigung.

• Fachwerkmodell mit Betontraganteil:

In dieser Modellvorstellung wird dem Beton neben der Tragfähigkeit der Druckstreben auch eine zusätzliche Kapazität zum Abtrag der Zugstreben zugetraut. Die einwirkende Querkraft Q muss kleiner sein als die Summe aus dem Widerstand der Querkraftbewehrung V_s entlang des um θ_{cr} geneigten Risses und des zusätzlichen Traganteils des Betons V_c :

Abbildung 2.14: Ansätze zur Querkraftbemessung für Bauteile mit Querkraftbewehrung: (a) Plastizitätskreis des Fachwerkmodells mit variabler Druckstrebenneigung θ (b) Fachwerkmodell mit Betontraganteil für konstante Rissneigung θ_{cr}

Der Winkel θ_{cr} ist in diesen Ansätzen als Risswinkel zu verstehen und wird entweder als fix angenommen oder lässt sich in Abhängigkeit der Belastung berechnen. Zusätzlich muss

die aufgebrachte Querkraft V auf einen Maximalwert, welcher das Stegbruchkriterium V_{max} darstellt, minimiert werden. In den meisten Fällen basiert der zusätzliche Betontraganteil auf der Annahme, dass über die Schubrisse hinweg weiterhin Spannungen übertragen werden können (Rissverzahnung). Es existieren jedoch auch Modelle, welche den anderen Tragmechanismen (siehe 2.3.1) Bedeutung schenken.

2.4.2.2 Fachwerkmodell mit variabler Druckstrebenneigung

Während *Ritter* [28] und *Mörsch* [29] in ihren Fachwerkmodellen noch von einer Druckstrebenneigung von θ =45° ausgingen, erweiterte *Kupfer* [39] die Mörsch'sche Fachwerkanalogie um die Idee einer variablen Neigung der Druckstreben θ . Dazu wendet er das das Prinzip der minimalen Formänderungsarbeit an, wodurch er imstande war den Winkel der Druckstrebe in Abhängigkeit der Spannungen im Beton und Bewehrungsstahl zu ermitteln. Basierend auf Gleichgewichtbedingungen lässt sich die Zugspannung in der Bügelbewehrung folgendermaßen berechnen:

$$\sigma_{sw} = \frac{V \cdot s_w}{A_{sw} \cdot z \cdot \cot\theta}$$
(2.23)

Die Druckspannungen in den Druckstreben ergibt sich zu:

$$\sigma_c = \frac{V}{b_w \cdot z \cdot \sin\theta \cdot \cos\theta}$$
(2.24)

Thürlimann in der Schweiz [40] und *Nielsen* in Dänemark [41] arbeiten bei ihrer Beschreibung des Querkraftverhaltens mit Spannungsfeldern (siehe Abbildung 2.15 (b)) und dem unteren oder statischen Grenzwertsatz der Plastizitätstheorie. Das Materialverhalten des Betons und Bewehrungsstahls wird als starr-plastisch modelliert, wobei die Betondruckfestigkeit *f_{c,red}* aufgrund des vorherrschenden Querzuges in den Druckstreben abgemindert wird. Der Druckstrebenwinkel θ errechnet sich unter der Annahme eines starr-plastischen Materialverhaltens durch Gleichsetzen von Gleichung 2.23 und 2.24. Hierfür ist es notwendig die Materialfestigkeiten zu definieren, d.h. für die Bügelbewehrung die Fließgrenze ($\sigma_{sw}=f_{yw}$) und für den Beton eine reduzierte Betondruckfestigkeit ($\sigma_c = f_{c,red}$). Die Neigung der Betondruckstreben ergibt sich somit zu:

$$\theta = \arcsin \sqrt{\frac{a_{sw} \cdot f_{yw}}{b_{w} \cdot f_{c,red}}} \le 45^{\circ}$$
(2.25)

Mechanisch bedeutet dies, dass im Bruchzustand die Querkraftbewehrung fließt und gleichzeitig die um θ geneigte Betondruckspannung die reduzierte Betondruckfestigkeit erreicht.

Die graphische Auswertung von Gleichung 2.25 zeigt die zwei maßgebenden Bereiche einer Querkraftbemessung: Im ersten Bereich stellt der sogenannte Plastizitätskreis die Versagenskurve in Abhängigkeit des Querkraftbewehrungsgrades dar, während ab einer Druckstrebenneigung von θ =45° der Querkraftwiderstand, unabhängig vom Bügelbewehrungsgrad, durch das Stegdruckbruchkriterium bestimmt wird (siehe Abbildung 2.14 (a)). Für die Bemessungspraxis muss die Höhe des Reduktionsfaktors der Druckfestigkeit η_{ϵ} Werte vorgegeben werden, da dieser Ansatz keine Aussage über den vorherrschenden Dehnungszustand im Steg liefert. Darüber hinaus muss zur Vermeidung sehr geringer Querkraftbewehrungsgehalte bzw. sehr dünner Stegdicken eine Begrenzung des Druckstrebenwinkels θ eingeführt werden ($\theta_{min} \le \theta \le \theta_{max}$).

bm

Abbildung 2.15: Fachwerkmodell: (a) klassisches Fachwerk mit variabler Druckstrebenneigung (b) Spannungsfelder

Der Querkraftwiderstand der Querkraftbewehrung lässt sich somit berechnen mit:

$$V_s = a_{sw} \cdot z \cdot f_{yw} \cdot \cot\theta$$
(2.26)

Die Druckstrebentragfähigkeit ergibt sich zu

$$V_{\max} = b_w \cdot z \cdot f_{c,red} \cdot \sin\theta \cdot \cos\theta \tag{2.27}$$

In Deutschland ist der Gebrauch von Stabwerkmodellen [25], zu denen auch das Fachwerkmodell gehört (siehe Abbildung 2.15 (a)), üblich, während in der Schweiz bevorzugt die Spannungsfeldmethoden (siehe Abbildung 2.15 (b)) für die Querkraftbemessung Anwendung finden. Für die hier vorgestellten vereinfachten Methoden liefern beide dieselben Ergebnisse. Der von Thürlimann vorgeschlagene Bemessungsansatz wird im Eurocode 2 [108,109,110,111] sowie in der ersten Näherungsstufe [48] des fib Model Code 2010 [101] für die Querkraftbemessung von Bauteilen mit rechnerisch erforderlicher Querkraftbewehrung angewandt.

Eine Erweiterung des von *Thürlimann* [40] vorgestellten Ansatzes basiert auf den Arbeiten von *Kaufmann und Marti* [42] und *Sigrist* [43,44]. Die sogenannte verallgemeinerte Spannungsfeldmethode berücksichtigt zusätzlich eine Verformungsverträglichkeitsbedingung,

bm

$$\varepsilon_1 = \varepsilon_x + \frac{\varepsilon_x - \varepsilon_2}{\tan^2 \theta}$$
(2.28)

und die Druckstrebenneigung $\boldsymbol{\theta}$ zu

$$\tan^2 \theta = \frac{\varepsilon_2 - \varepsilon_x}{\varepsilon_2 - \varepsilon_z}$$
(2.29)

Unter der Annahme, dass die Hauptdruckstauchung ϵ_2 die Stauchung bei Erreichen der Druckfestigkeit des Betons erreicht ϵ_{c0} = 2,0 ‰ und durch Einsetzen der mittleren Dehnung der Querkraftbewehrung ϵ_z bei Fließbeginn und beim Erreichen der Zugfestigkeit, können minimale und maximale Neigungen des Druckspannungsfeldes θ angegeben werden. Auf Basis des Zuggurtmodells [47] unter Zugrundelegung üblicher Verbund- und Dehnungswerte ergibt sich die minimale und maximale Druckstrebeneigung θ gemäß [44] zu

$$20^{\circ} + 5000 \cdot \varepsilon_x \le \theta \le 35^{\circ} + 5000 \cdot \varepsilon_x \tag{2.30}$$

Eine geringe Längsdehnung ε_x , wie sie bei vorgespannten Bauteilen vorkommen, bedeutet somit eine geringere Druckstrebenneigung θ und somit eine höhe Querkrafttragfähigkeit V_R. Mit der Hauptzugdehnung ε_1 aus Gleichung 2.28 lässt sich der Reduktionfaktor η_{ε} folgendermaßen bestimmen:

$$\eta_{\varepsilon} = \frac{1}{1, 2 + 55 \cdot \varepsilon_1} \tag{2.31}$$

Da höherfeste Betone zu spröderen Bruchverhalten neigen, bedarf es noch eines zusätzlichen Abminderungsfaktors:

$$\eta_{fc} = \left(\frac{30}{f_c}\right)^{\frac{1}{3}} \le 1,0 \text{ mit } f_c \text{ in } [N/mm^2]$$
 (2.32)

Daraus folgt die reduzierte Betondruckfestigkeit f_{c,red} zu:

$$f_{c,red} = \eta_{fc} \cdot \eta_{\varepsilon} \cdot f_c \tag{2.33}$$

Der Querkraftwiderstand ergibt sich auch in diesem Fall gemäß Gleichung 2.26 und 2.27. Dieser genauere Ansatz wird in der SIA 262 [105] sowie in der zweiten Näherungsstufe [48] des fib Model Code 2010 [101] angewandt.

Die allgemeinste Art der Bemessung mit Spannungsfeldern ergibt sich unter Berücksichtigung eines linear elastischen-ideal plastischen Materialverhaltens für Beton und Bewehrungsstahl und der Formulierung einer Verformungsverträglichkeitsbedingung, welche in jedem Punkt des Bauteils formuliert wird (elastisch plastische Spannungsfelder) [49]. Dieses Verfahren wurde von Fernández Ruiz und Muttoni [49] in die Finite –Elemente Methode implementiert. Da die Anwendung dieses Modelles sehr aufwändig ist und in der Regel den Einsatz von Computerprogrammen erfordert, wird er im Zuge dieses Berichtes nicht weiter verfolgt.

Bei der Querkraftbemessung mit Fachwerkmodellen oder klassischen Spannungsfeldern auf Basis der Plastizitätstheorie ist die Angabe von Grenzwerten, innerhalb derer die Druckstrebenneigung θ frei gewählt werden kann, notwendig. Bei den verallgemeinerten Spannungsfeldern kann in Abhängigkeit des Dehnungszustandes der Winkel θ analytisch berechnet werden. Besonders bei Bauteilen mit sehr geringen Querkraftbewehrungsgehalten können sich sehr flache Druckstrebenneigungen θ ergeben, welche jedoch von der Rissneigung θ_{cr} wesentlich abweichen. Diese Rotationkapazität der Druckstreben setzt indirekt voraus, dass eine Kraftübertragung über Risse hinweg oder über Dübelwirkung erfolgt.

2.4.2.3 Fachwerkmodell mit Betontraganteil

Dieser Abschnitt soll eine Übersicht über einige Ansätze liefern, welche einen über die Fachwerkwirkung hinausgehenden Betontraganteil V_c erlauben.

45° Fachwerk mit Betontraganteil:

Bei diesem Ansatz wird von einem 45° Fachwerkmodell und einen additiven Betontraganteil V_c ausgegangen. Die zusätzliche Querkrafttragfähigkeit des Betons wird dabei meist empirisch ermittelt und soll die bekannten Tragmechanismen (z.B.: Rissverzahnung usw.) in einem Term zusammenfassen. Die Querkrafttragfähigkeit der Schubbewehrung wird somit gemäß Mörsch'scher Fachwerkanalogie bestimmt, es werden also keine variablen Druckstrebenneigungen zugelassen. Der große Vorteil dieser Modellvorstellung liegt in seiner Einfachheit. Es ist jedoch schon länger bekannt, dass das 45° Fachwerk die Querkrafttragfähigkeit der Querkraftbewehrung zum Teil massiv unterschätzt, da die Neigung der Schubrisse zum Teil weit flachere Winkel als 45° annehmen kann. Wie auch beim Fachwerkmodell mit variabler Druckstrebenneigung ist es notwendig, die maximale Querkrafttragfähigkeit V_{max}, welche sich durch das Stegdruckbruchkriterium ergibt, zu formulieren. Das Bemessungskonzept ist in dimensionsloser Form in Abbildung 2.14 (b) dargestellt.

bm

Repräsentativ für diese Ansätze wird hier das von Specht und Scholz [37] entwickelte Ingenieurmodell und die von Leonhardt ausgearbeitete "erweitere Fachwerksanalogie" [51] angeführt.

Dieses Konzept entspricht dem "Standardverfahren" der ersten Fassung des Eurocode 2 [108,109,110,111], welches jedoch in der aktuellen Version nicht mehr Anwendung findet. In den früheren österreichischen Betonbaunormen [116,117,118,119] war dieser Ansatz über einen von der Betongüte abhängigen Abzugwert ebenso verankert. Im amerikanischen Raum (ACI 318 [104]) basiert die Querkraftbemessung für Stahlbetonbauteile mit Querkraftbewehrung noch heute auf dieser Modellvorstellung.

Fachwerkmodell mit Rissreibung:

Das Fachwerkmodell mit Rissreibung kann als Hybridlösung bezeichnet werden, da es zum einen auf dem Fachwerkmodell mit variabler Druckstrebenneigung auf Grundlage der Plastizitätstheorie basiert und zum anderen jedoch auch einen additiven Betontraganteil V_c zulässt. Dieser Ansatz wird für die Querkraftbemessung gemäß DIN 1045-1 [113] und auch im nationalen Anwendungsdokument des Eurocode 2 [107] in Deutschland für die Querkraftbemessung eingesetzt und basiert auf den Arbeiten von Reineck [34,50].

Abbildung 2.16: Fachwerkmodell mit Rissreibung nach Reineck [34,50]: (a) Freigeschnittener Körper (b) Darstellung des Bemessungsverfahrens

Im Fachwerkmodell mit Rissreibung wird strikt zwischen Druckstrebenneigung θ und der Rissneigung β_r unterschieden. Das vertikale Gleichgewicht des im Risswinkel β_r freigeschnitten Körpers lautet somit (siehe Abbildung 2.16(a)):

$$V_s = a_{sw} \cdot z \cdot f_{yw} \cdot \cot \beta_r + V_{cr} + V_p$$
(2.34)

Die Rissneigung β_r wird gemäß der Neigung der Hauptzugspannung im Querschnittsschwerpunkt im Zustand I ermittelt und ergibt sich durch Linearisierung zu

$$\cot \beta_r = 1, 2 - 0, 2 \cdot \frac{\sigma_c}{f_{ct}} \quad \text{mit } \sigma_c = \frac{N}{A_c}$$
(2.35)

Für Bauteile ohne Normalkraft wurde auf Basis von Versuchsbeobachtungen ein Risswinkel β_r von 40° (cot β_r = 1,2) gewählt, obwohl die Hauptspannungsrichtung im Schwerpunkt eines Bauteils ohne Normalkraft 45° beträgt.

Der Betontraganteil V_{cr} beruht nach Reineck [34,50] auf der Schubkraftübertragung in den Rissen (Rissverzahnung). Dies erfordert die Formulierung von kinematischen Beziehungen zur Ermittlung der Rissöffnung und Rissgleitung, damit mit Hilfe von Reibungsgesetzen [z.B.: [3]) die über die geneigten Schubrisse übertragbaren Kräfte berechnet werden können (siehe Abschnitt 2.3.1.1). Dies kann in der Regel nur iterativ geschehen und ist somit für die tägliche Ingenieurspraxis untauglich, weshalb Reineck [34,50] darauf aufbauend ein vereinfachtes Verfahren zur Ermittlung der Querkrafttragfähigkeit des Betons infolge Rissreibung empirisch ermittelte:

$$V_{cr} = 0,24 \cdot f_c^{\frac{1}{3}} \cdot \left(1+1,2\frac{\sigma_c}{f_c}\right) \cdot b_w \cdot z$$
(2.36)

Anstelle den Betontraganteil V_{cr} direkt auf der Widerstandsseite anzurechnen, wird eine Rotation der Druckstrebe über den Riss hinweg durch Anpassung des Druckstrebenwinkels θ gewählt, welche sich wie folgt ergibt

$$\cot \theta_{\min} = \frac{\cot \beta_r}{1 - \frac{V_{cr}}{V}}$$
(2.37)

Wie auch schon beim Fachwerkmodell mit variabler Druckstrebenneigung muss zusätzlich zum Kriterium aus Gleichung 2.37 eine minimale und maximale Druckstrebenneigung angegeben werden:

Ergänzend zur Bestimmung der Schubtragfähigkeit der Querkraftbewehrung muss die Tragfähigkeit der Druckstrebe nachgewiesen werden:

$$V_{\max} = b_w \cdot z \cdot 0,75 \cdot f_c \cdot \sin \theta \cdot \cos \theta \tag{2.38}$$

Abbildung 2.16 (b) zeigt eine Zusammenfassung der Querkraftbemessung gemäß Fachwerkmodell mit Rissreibung. Im unteren Beanspruchungsbereich wird das Querkrafttragvermögen vom Bügelbewehrungsgrad und der Rissreibungskapazität, welche jeweils linearen Zusammenhänge aufweisen, bestimmt. Ab dem Schnittpunkt mit dem sogenannten Plastizitätskreis wird die Druckstrebentragfähigkeit maßgebend.

Modell von Hegger und Görtz:

Während das Fachwerkmodell mit Rissreibung der Kraftübertragung von Kräften über Risse hinweg das Hauptaugenmerk schenkten, sind Hegger und Görtz [52,53] in ihrem Querkraftmodell davon überzeugt, dass die Querkraftabtragung in der Druckzone maßgebend für den zusätzlichen Betontraganteil V_c verantwortlich ist. Durch Analyse von Messungen des Rissöffnungsverhaltens von Schubrissen an Trägern mit geringen Bügelbewehrungsgrad kamen sie zum Schluss, dass die Rissreibung kurz vor Versagen von vernachlässigbarer Größenordnung ist [54]. Da somit über die Risse keine Kräfte übertragen werden können, entspricht der Risswinkel β_r der Druckstrebeneigung θ . Anhand der Betrachtung von Rissbildern aus Versuchsberichten leitet Görtz eine vom mechanischen Bügelbewehrungsgrad $\omega_{w,ct}$ abhängige Gleichung für den Risswinkel ab:

$$\cot \theta = \cot \beta_r = 1 + 0.15 \cdot \frac{0.15}{\omega_{w,ct}} - 0.18 \cdot \frac{\sigma_c}{f_{ct}} \le 2.15 \text{ mit } \sigma_c = \frac{N}{A_c}$$
(2.39)

Die Querkrafttragfähigkeit ergibt sich somit zu

$$V_s = a_{sw} \cdot z \cdot f_{yw} \cdot \cot \beta_r + \kappa_s \cdot V_{c,s} + \kappa_p \cdot V_{c,p}$$
(2.40)

Der Betontraganteil V_{c,s} wird in seinem Ansatz gemäß des Modells von Zink [16] (siehe Abschnitt 2.3.3.4) beschrieben, in welchem die Querkrafttragfähigkeit auf den in der Druckzone übertragbaren Schubspannungen basiert. Darüber hinaus geht er davon aus, dass bei vorgespannten Bauteilen ein Teil der Querkraft V_{c,p} über ein sogenanntes Sprengwerk direkt zu den Auflagern geleitet wird (siehe Abbildung 2.17):

$$V_{c,p} = P \cdot \frac{z_p}{a} \tag{2.41}$$

Die Betontraganteile $V_{c,i}$ müssen jedoch noch mit empirisch ermittelten Vorfaktoren κ multipliziert werden, um eine passende Übereinstimmung mit Versuchen gewährleisten zu können:

$$\kappa_s = 1 - \frac{\omega_{w,ct}}{3} \ge 0 \tag{2.42}$$
$$\kappa_p = 1 - \omega_{w,ct} \ge 0$$

bm

Abbildung 2.17: Sprengwerkwirkung: (a) bei gerader Spanngliedführung (b) bei geneigter Spanngliedführung

Die Druckstrebentragfähigkeit V_{max} wird nach Gleichung 2.38 bestimmt.

Für die praktische Bemessung eignet sich dieser Ansatz nur bedingt, da die Querkraftbewehrung vorab noch eine Unbekannte darstellt und diese somit nur iterativ bestimmt werden kann. Deshalb haben Hegger und Görtz [52] ein auf das Nachweisformat des Eurocode 2 angepasstes Ingenieurmodell veröffentlicht, welches einen gleitenden Übergang zwischen Bauteilen ohne und mit Querkraftbewehrung erlaubt. Für Näheres wird auf [52] verwiesen.

Simplified Modified Compression Field Theory (SMCFT):

Die SMCFT [8] erlaubt einen gleitenden Übergang von Bauteilen ohne und mit Querkraftbewehrung und setzt sich aus einem Fachwerk- und Betontraganteil zusammen:

$$V = V_c + V_s = \beta \cdot \sqrt{f_c} \cdot b_w \cdot z + a_{sw} \cdot z \cdot f_{yw} \cdot \cot\theta$$
(2.43)

Der Betontraganteil wurde bereits in Abschnitt 2.3.3.2 erläutert und basiert auf der Rissreibung bzw. Rissverzahnung.

Die Druckstrebenneigung θ wird ebenso in Abhängigkeit der Längsdehnung ϵ_x auf halber Höhe der statischen Nutzhöhe z/2 ermittelt:

$$\theta = \left(29^\circ + 7000 \cdot \varepsilon_x\right) \cdot \left(0,88 + \frac{s_{xe}}{2500}\right) \le 75^\circ$$
(2.44)

Die SMCFT [8] wurde in leicht abgewandelter Form in die kanadische Betonbaunorm CSA 23.03 [102] sowie in die amerikanische Brückenbaunorm AASTHO LFRD [103] übernommen. Eine Kombination der SMCFT [8] mit den verallgemeinerten Spannungsfeldern [43,44] bildet auch die dritte Näherungsstufe [48] des fib Model Code 2010 [101] für die Querkraftbemessung von Bauteilen mit Querkraftbewehrung.

2.4.2.4 Mindestbewehrung

Die in Abschnitt 2.4.2 erläuterten Modelle erfordern die Anordnung einer Mindestbewehrung $\rho_{w,min}$ um eine genügende Verformungskapazität und somit eine Umlagerung auf die

Querkraftbewehrung zu gewährleisten. Bei Unterschreitung eines gewissen Bewehrungsgehaltes kann keine Aktivierung der Querkraftbewehrung erfolgen, so dass die frei werdende Zugkräfte im Schubriss zu einem sofortigen Versagen der Bügelbewehrung führen. In so einem Fall lässt sich die Querkrafttragfähigkeit anhand der in Abschnitt 2.3.3 angeführten Ansätze für Bauteile ohne Querkraftbewehrung beschreiben.

3 DATENBANKEN MIT QUERKRAFTVERSUCHEN

3.1 Allgemeines

Die Bemessung im Betonbau basiert entweder auf mechanisch begründeten Modellen oder ist durch Erkenntnissen aus Versuchen und dadurch empirisch abgeleiteten Ansätzen bestimmt. Die Bemessung von Bauteilen, welche mit einem Biegemoment und/oder Normalkraft belastet werden, hat mit der Bernoulli-Hypothese, welche besagt, dass Querschnitte auch im verformten Zustand eben bleiben, eine klares theoretisches Fundament. Durch die Erfüllung von Gleichgewichtsbeziehungen, die Berücksichtigung von Verträglichkeitsbedingungen sowie der Anwendung von realitätsnahen Materialgesetzen steht für die Biegebemessung ein weltweit anerkanntes Werkzeug zur Verfügung. Während für die Bemessung auf Biegung lediglich die Spannungsverteilungen in der Druckzone aus Versuchen abgeleitet wurden, sind die Bemessungsregeln für die Querkraftbemessung sowohl von Bauteilen mit als auch ohne Querkraftbewehrung weitgehend auf Versuchserfahrungen gebettet. Dies liegt, wie bereits eingangs erwähnt, einerseits am komplexen Zusammenwirken verschiedenster Tragmechanismen, welche zu verschiedenen Belastungszeitpunkten wirken und andererseits an der Vielzahl der unterschiedlichen Einflussparameter. Um diese Einflüsse empirisch ermitteln zu können, bedarf es daher einer breiten und zuverlässigen Datenbasis an Versuchen, die die für die Praxis relevanten Einflussparameter ausreichend abdeckt. Daher beinhalten alle Modellansätze aus der Literatur auch Angaben zu Datenbanken mit Querkraftversuchen. Im Zuge dieses Kapitels soll eine Übersicht über verfügbare Datenbanken gegeben werden. Darüber hinaus wird die eigens erstellte Datenbank vorgestellt.

3.2 Verfügbare Querkraftdatenbanken

3.2.1 ACI – DAfStb Datenbank mit Querkraftversuchen

Ursprünglich für die Überprüfung der empirischen Gleichungen für die Querkraftbemessung der DIN 1045 [113] erstellt, wurde die Datenbank [60] mit einer zeitgleich von Kuchma aufgebauten Datenbank zusammengeführt und 2012 in einem "grünen Heft" des Deutschen

AISIFI I INIAIG bm

Ausschusses für Stahlbeton auf Deutsch publiziert [55]. Diese "Erweiterte Datenbank" ist wiederum unterteilt in:

- Bauteile mit gerader, geneigter bzw. ohne Bügelbewehrung •
- Stahlbeton, Spannbeton und Leichtbeton •
- Punktlast oder Gleichlast •
- Schlanke und gedrungene Bauteile •

Diese Datenbanken werden im Zuge einer ACI-DAfStb Arbeitsgruppe [56] laufend erweitert und kontrolliert. Ziel ihrer Arbeit ist die Schaffung einer geprüften und weltweit anerkannten Datenbasis an Querkraftversuchen, welche für Normenvergleiche und weitere theoretische Arbeiten auf dem Gebiet der Querkrafttragfähigkeit dienen soll.

Ein wesentliches Merkmal dieser Datenbank ist die Festlegung von gewissen Kriterien, mit welchen die einzelnen Versuchsdaten kontrolliert und in weiterer Folge unbrauchbare Datensätze aussortiert werden können. Dies sind auf der einen Seite Mindestanforderungen, wie z.B. Mindestbreite, Mindestbetondruckfestigkeit usw. und auf der anderen Seite Kontrollen gewisser Kriterien, wie z.B. Überprüfung der rechnerischen Biegetragfähigkeit und der rechnerisch erforderlichen Verankerungslängen. Aufgrund der durchgeführten systematischen Kontrolle ergeben sich drei Teildatenbanken, wobei die dritte Datenbank nur mehr bereits verifizierte Versuchsdaten enthält. Unter Einhaltung gewisser Regeln für die Veröffentlichung steht diese sogenannte Teildatenbank C der Fachwelt uneingeschränkt als Excel-Datei zur Verfügung. Die Einführung von eigenen Kontrollkriterien ist jedoch nur mehr beschränkt möglich.

3.2.2 Datenbank von Collins, Bentz

Collins und Bentz [58] verwendeten zur Verifikation der Bemessungsgleichungen für Querkraft des ACI 318 [104], CSA 23.03 [102] und AASHTO LFRD [103] eine Datenbank mit 1849 Querkraftversuchen an schlanken und gedrungenen Bauteilen aus Normalbeton ohne Vorspannung, Bügelbewehrung und Normalkraft. Die Datenbank beinhaltet Versuche mit Punkt- und Gleichlast aus 114 Veröffentlichungen. Die Datenbank wurde in einem ACI Paper [58] publiziert, steht jedoch in keinem bearbeitbaren Format zur Verfügung.

3.2.3 Datenbank von Yu, Baźant

Yu und Ba2ant [59] veröffentlichten eine Datenbank zur Untersuchung inwieweit bei schubschlanken Bauteilen mit geringer Querkraftbewehrung noch ein Maßstabseinfluss gegeben ist. Dazu sammelten sie Versuchsdaten von 234 Querversuchen aus 26 Veröffentlichungen. Die Datenbank ist als Excel-Datei unter http://www.iti.northwester.edu downloadbar.

3.2.4 Datenbank von Nakamura

Nakamura erstellte in seiner Master Thesis [57] eine Datenbank mit 1696 Querkraftversuchen an vorgespannten Bauteilen mit nachträglichem und sofortigem Verbund. Die Datenbank enthält Versuchsträger mit und ohne Querkraftbewehrung. Die Besonderheit seiner Datenbank ist, dass neben amerikanischen und europäischen Versuchen auch eine Vielzahl von japanischen Querkraftversuchen gesammelt wurde. Die wesentlichsten Daten sind im Anhang seiner Arbeit angeführt.

3.2.5 Datenbank von Mihaylov et al.

Mihaylov et al. [61] entwickelte für die Beschreibung des Querkrafttragverhaltens von gedrungen Bauteilen mit und ohne Schubbewehrung ein kinematisches Modell mit zwei Freiheitsgraden. Verifiziert wurde das Modell anhand einer selbst erstellten Versuchsdatenbank mit Querkraftversuchen an gedrungenen rechteckigen Balken mit und ohne Schubbewehrung, welche im Anhang des Artikels angehängt wurde.

3.3 Entwicklung einer eigenen Datenbank

3.3.1 Allgemeines

Entgegen der Beschreibung des Arbeitspaketes 3, nur auf bestehende Datenbanken zurück zu greifen, entschloss man sich Versuche selbst zu sichten und in eigenen Datenbanken zusammenzufassen. In der Vorgehensweise hat man sich dabei an die von Reineck erstellte Datenbank [55,56] angelehnt. Die Erstellung einer eigenen Datenbank wird folgendermaßen begründet:

- Durch Anwendung einer nicht selbsterstellten Datenbank kann keine Aussage über die Qualität der durchgeführten Versuche getroffen werden. Viele Versuche werden in Fachzeitschriften publiziert und beinhalten öfters nicht alle notwendigen Informationen, um die Versuchsergebnisse nachvollziehen zu können (Materialkennwerte, Versuchsaufbau usw.). Versuche, welche in Versuchsberichten oder Dissertationen ausgewertet wurden, sind zu bevorzugen. Des Weiteren sind Versuchsberichte zu präferieren, welche detaillierte Aussagen über die Materialkennwerte von Beton (Zugfestigkeit, E-Modul, Druckfestigkeit) und Fotos bzw. Skizzen der Rissbilder beinhalten.
- Durch die eigenständige Sichtung von Versuchen können nicht plausible Versuchser-• gebnisse ausgeschlossen werden (z.B.: andere Versagensarten).
- Möglichkeit der Untersuchung zusätzlicher Parameter, wie z.B.: die Rissneigung usw.
- Sichtung neuer Versuche.

- Die Möglichkeit eigene Mindestanforderungen und Kontrollkriterien zu definieren.
- Die strikte Trennung verschiedener Versagensarten in separaten Datenbanken.

Die eigene Datenbank stellt die Basis für alle weiteren Arbeitspakete dar.

3.3.2 Vorgehensweise

3.3.2.1 Einteilung der Datenbanken

Im Rahmen dieses Forschungsvorhabens soll die Querkrafttragfähigkeit von Bauteil ohne bzw. mit geringer Querkraftbewehrung untersucht werden. Da ebenso der Einfluss der Vorspannung auf den Querkraftwiderstand miteinbezogen werden soll, ergeben sich folgende Teildatenbanken:

- Stahlbetonbalken ohne Querkraftbewehrung unter punktueller Belastung mit Rechteckquerschnitt (STB_o)
- Stahlbetonbalken ohne Querkraftbewehrung unter gleichmäßiger Belastung mit Rechteckquerschnitt (STB_o_G)
- Spannbetonbalken ohne Querkraftbewehrung unter punktueller Belastung mit Rechteckquerschnitt (SPB_o)
- Stahlbetonbalken mit geringer Querkraftbewehrung unter punktueller Belastung (STB_m)
- Spannbetonbalken mit geringer Querkraftbewehrung unter punktueller Belastung (SPB_m)
- Kragarme von Fahrbahnplatten ohne Querkraftbewehrung (STB_Fbpl)

Da Versuche mit gleichmäßiger Belastung aufgrund der aufwändigen Versuchsdurchführung nur sehr selten sind, können nur für Stahlbetonbalken ohne Querkraftbewehrung eine repräsentative Anzahl von Versuchen zusammengefasst werden.

3.3.2.2 Literatursichtung

Bei der Auswahl der Versuche orientierte man sich stark an den bereits in vorhandenen Datenbanken angeführten Versuchen. Zusätzlich wurden eigene und gut dokumentierte Versuche aus der Literatur ergänzt. Während der Literatursichtung wurde bereits überprüft, ob die wesentlichsten Daten angeführt wurden. Bei Fehlen wichtiger Versuchsdaten (z.B.: Materialkennwerte Beton usw.) bzw. bei Angabe einer anderen Versagensart (Biegeversagen, Verankerungsbruch usw.) wurde bereits vorab auf eine Berücksichtigung verzichtet. Die hier eingearbeiteten Experimente stammen ausschließlich aus den europäischen und

3.3.2.3 Aufbau der Datenbank

Die der Literatur zu entnehmenden Daten wurden im Tabellenkalkulationsprogramm Microsoft Excel gesammelt. Abbildung 3.1 zeigt einen typischen Querkraftversuch an einem vorgespannten Einfeldbalken mit einer punktuellen Belastung sowie die Definitionen der zu übertragenden Daten.

Abbildung 3.1: Typischer Querkraftversuch an einem Einfeldbalken und Definitionen für die Datenbank

Die Datenerhebung gliedert sich in unterschiedliche Teilbereiche:

- Allgemeine Angaben: Fortlaufende Nummer, Literaturverweis, Querschnitt, Versuchsparameter, Bezeichnung der Versuchskörper aus der Literatur.
- Abmessungen der Versuchskörper: Abmessungen der Versuchskörper und daraus berechnete Querschnittswerte (z.B.: Schwerpunkt, Bruttofläche) (siehe Abbildung 3.1).
- Angaben zum Versuchsaufbau: Spannweite, Abstand des Lastangriffpunktes zum Auflager, Abmessungen der Lasteinleitung- und Auflagerplatten, die Länge des Balkenüberstandes.
- Längsbewehrung im Zug- und Druckgurt: Anzahl der Stäbe und Lagen, Durchmesser und Fläche der Bewehrung, Beschreibung der Oberflächenbeschaffenheit, Bewehrungsgehalt, Materialkennwerte, Abstand der Bewehrungslage zur Bauteiloberkante
- Verteilerbewehrung: Anzahl und Durchmesser der Stäbe, Abstand.
- Normalkraft: äußere Druck- oder Zugkraft, Normalspannung infolge Normalkraft.
- Vorspannung: Angaben zur Vorspannkraft zum Zeitpunkt des Versuches (abzüglich Spannkraftverluste), Angaben zum Vorspannsystem.

- Spannstahl: Fläche und Art der Spannglieder, Abstand des Spannglieds zur Bauteiloberkante, Angabe zur Oberflächenbeschaffenheit, Hühlrohrdurchmesser bei Vorspannung im nachträglichen Verbund, Materialkennwerte des Spannstahls, Berechnung der statischen Nutzhöhe in Abhängigkeit der Flächen und Festigkeiten der schlaffen Bewehrung und des Spannstahls.
- Bügelbewehrung: Durchmesser und Fläche eines Stabes, Anzahl der Stäbe pro Bügel, Abstand der Bügel in Längsrichtung, Bügelbewehrungsfläche pro Laufmeter, Oberflächenbeschaffenheit, Bügelbewehrungsgrad, Materialkennwerte der Bügelbewehrung.
- Materialkennwerte Beton: Größtkorn, Betonfestigkeiten (Druck- und Zugfestigkeit), Elastizitätsmodul, Angaben zu Abmessungen der Prüfkörper für Druck- und Zugversuche, Art der experimentellen Bestimmung der Zugfestigkeit (direkter Zugversuch, Spaltzugversuch, Biegezugversuch).
- Versuchsergebnisse: Schubrisslast, Experimentell ermittelte Traglast, Querkraft aus Eigengewicht des Träger und Versuchsaufbau, maximales Biegemoment

Ein besonderes Augenmerk muss auf die Datenerhebung der Materialkennwerte des Betons gelegt werden. Es ist bekannt, dass die Höhe der experimentell ermittelten Betondruckfestigkeit stark von der Geometrie des Prüfkörpers abhängig ist. Da in den einzelnen Versuchsreihen zumeist die unterschiedlichsten Prüfkörpergeometrien verwendet wurden, ist es notwendig, Umrechnungsfaktoren zu definieren. Da sich aktuelle Bemessungsnormen in der Regel auf die Zylinderdruckfestigkeit beziehen, wird für die im Zuge dieses Vorhabens erstellten Datenbanken ein Zylinder mit den Abmessungen Ø/h=150/300mm als Grundlage gewählt. Die Umrechnungsfaktoren wurden in Anlehnung an [55] und [62] angenommen und sind im Anhang B angeführt. In den wenigstens Fällen werden Zugfestigkeit und Elastizitätsmodul experimentell bestimmt, weshalb diese aus der Betondruckfestigkeit gemäß Eurocode 2 [108] berechnet werden.

Die wesentlichsten Angaben zur Datenerfassung der einzelnen Datenbanken sind im Anhang B angeführt. Die detaillierten Angaben können den einzelnen Excel-Dokumenten entnommen werden.

3.3.2.4 Ausschlusskriterien

Die Definition von Mindestanforderung bzw. Ausschlusskriterien ist notwendig, um unbrauchbare Versuchsdaten auszuschließen Deshalb wurden für sämtliche Datenbanken folgende Kriterien eingeführt:

• rechnerische Biege- und Verankerungsbrüche

🖉 AISIFI I INIAIG 🔰 bm🔍 🚺

- Stegbreite b_w<3·d_g
- Bauteilhöhe h<5·dg
- Schubschlankheit a/d<2,75 bzw. I/d<7

Zusätzlich wurden bei der Datenbank ohne Querkraftbewehrung Balken mit einer über die Höhe verteilten Bewehrung eliminiert.

Auf einen Ausschluss von Versuchen an Bauteilen mit Querkraftbewehrung, welche die Mindestquerkraftbewehrung a_{sw,min} gemäß Eurocode 2 [108] nicht einhalten, wird ebenso gezielt verzichtet.

Es sei an dieser Stelle nochmals darauf hingewiesen, dass auf eine Betrachtung von gedrungen Bauteilen (a/d $\lesssim 2,75$ bzw. l/d $\lesssim 7$) bei der Datenbankerstellung gezielt verzichtet wurde. Es werden in den Datenbanken nur schubschlanke Bauteile in Betracht gezogen.

3.3.2.5 Charakteristika der Datenbanken

Nachstehend sollen einige Eckdaten der erstellten Datenbanken erläutert werden.

Tabelle 3.1 gibt eine Übersicht über die Anzahl der gesammelten Versuche und über die ausgeschlossenen Versuchsdaten nach Anwendung der in Abschnitt 3.3.2.4 angeführten Kontrollkriterien.

Tabelle 3.1: Übersicht über die Anzahl der Versuche in den Datenbanken bevor und nach Anwendung der Ausschlusskriterien

Datenbank	Alle	Aus-	% von
		schluss	allen
Stahlbetonbalken ohne Querkraftbewehrung mit Punktlast	397	102	25,7
Stahlbetonbalken ohne Querkraftbewehrung mit Gleichlast	35	10	28,6
Spannbetonbalken ohne Querkraftbewehrung	102	14	13,7
Stahlbetonbalken mit geringer Querkraftbewehrung	153	40	26,1
Spannbetonbalken mit geringer Querkraftbewehrung	45	24	53,3
Versuche an Kragarmen von Fahrbahnplatten	14	0	0
Σ	746	190	25,5

Nachfolgend werden für die Datenbanken mit der größten Anzahl an Versuchsdaten (Stb_o und Stb_m) Histogramme verschiedener Einflussparameter dargestellt.

In Abbildung 3.2 (a) zeigt die Anzahl der Versuche eingeteilt in Klassen von $\Delta a/d = 0,5$. Die meisten der gesammelten Daten weisen eine Schubschlankheit a/d von 3-3,5 auf, was seit den Arbeiten von Kani [21] und auch Leonhardt [20] als schubkritische Laststellung bekannt ist.

bm

Bei Betrachtung der Klassenverteilung der Druckfestigkeit f_c ist augenscheinlich, dass ein Großteil der Versuche eine geringere Druckfestigkeit f_c als 40 N/mm² aufweist. Dies ist einerseits darauf zurückzuführen, dass die Forschung an hochfesten Beton erst relativ jung ist und andererseits dass die umfangreichen Versuchsreihen von Kani [21], Krefeld et al. [10] und Leonhardt [20] an Normalbeton durchgeführt wurden.

Abbildung 3.2: Datenbank mit Stahlbetonbalken ohne Querkraftbewehrung mit Punktlast: Anzahl der Versuche eingeteilt in Klassen: (a) Schubschlankheit a/d (b) Druckfestigkeit f_c (c) statische Höhe d (d) Längsbewehrungsgrad ρ_i

Einen wesentlichen Parameter bei Bauteilen ohne Schubbewehrung stellt die statische Nutzhöhe d dar. Abbildung 3.2 (c) legt dar, dass überwiegend Bauteile mit einer Nutzhöhe kleiner als 500mm getestet wurden (320 Balken, d.h. 81,2%). Versuche an großen Bauteilen sind stark unterpräsentiert, sind jedoch für Untersuchungen des Maßstabseinflusses unabdinglich.

Die in Abbildung 3.2 (d) ersichtliche Verteilung der Versuche in Bezug auf den Längsbewehrungsgrad ρ_l zeigt, dass die Querkrafttragfähigkeit in einem weiten Bereich von verschiedenen Bewehrungsgraden geprüft worden ist. Um ein vorzeitiges Biegeversagen mit

Sicherheit auszuschließen, wird oftmals eine für die Praxis unrealistische Bewehrungsmenge angeordnet. Dies wird im Speziellen bei Versuchen an besonders schubschlanken Bauteilen angewendet.

Abbildung 3.3: Datenbank mit Stahlbetonbalken mit Querkraftbewehrung mit Punktlast: Anzahl der Versuche eingeteilt in Klassen: (a) Druckfestigkeit f_c (b) statische Höhe d (c) Bügelbewehrungsgrad ρ_w (d) Verhältnis Bügelbewehrungsgrad zu Mindestquerkraftbewehrungsgrad gemäß Eurocode 2 [108] $\rho_{w/}$ $\rho_{w,min,EC2}$

Die Verteilung der Druckfestigkeit f_c sowie der statischen Nutzhöhe d, welche in Abbildung 3.3 (a) und (b) dargestellt ist, weist bei der Datenbank für Bauteile mit Querkraftbewehrung ähnliche Charakteristika auf wie jene bei Bauteilen ohne Querkraftbewehrung, d.h. eine große Anzahl an kleine Versuchsobjekten aus Normalbeton. Die Besonderheit dieser Datenbank ist die Berücksichtigung von Bauteilen mit sehr geringer Querkraftbewehrung, was durch Abbildung 3.3 (c) und (d) verdeutlicht wird. Die in dieser Datenbank gesammelten Experimente verfügen über eine Querkraftbewehrung, welche im Bereich der Mindestquerkraftbewehrung $\rho_{w,min}$ gemäß Eurocode 2 [108] liegt. Bei 54 Balken (35,3%) wird die Mindestbewehrung sogar unterschritten, bei 133 Balken (87%) wurden weniger als die zweifache Mindestquerkraftbewehrung angeordnet.

3.3.2.6 Gewonnene Erkenntnisse

Die umfangreiche Sichtung hat gezeigt, dass zwar eine Vielzahl von Querkraftversuchen existiert, jedoch die Anzahl von gut dokumentierten Experimenten dennoch begrenzt ist. Diese Aussage mag zwar bei Untersuchungen an Stahlbetonbalken ohne Schubbewehrung nicht zutreffen, jedoch bei der Analyse des Querkrafttragverhaltens bei Spannbetonbalken mit Querkraftbewehrung herrscht noch erheblicher Bedarf an experimenteller Forschung (siehe Tabelle 3.1). Ein wesentlicher Nachteil ist, dass die Datenlage der Versuchsdatenbank ungleichmäßig über die jeweiligen Einflussparameter verteilt ist (siehe Abschnitt 3.3.2.5). Dies spielt im Besonderen für empirische Ansätze eine nicht unbedeutende Rolle. da solche Modelle in unterrepräsentierten Bereichen ungenaue Vorhersagen liefern können.

Darüber hinaus konnte festgestellt werden, dass ein Großteil der Experimente an Einfeldsystemen mit punktförmiger Lasteinleitung durchgeführt wurden. Versuche mit gleichförmiger Belastung sind rar, was aufgrund der aufwändigeren Versuchsaufbauten und -steuerungen durchaus nachvollziehbar ist. Ähnliches gilt für Querkraftversuche an Durchlaufsystemen.

Des Weiteren hat es sich bewährt, eine Datenbank auch nach der Versagensart einzuteilen, d.h. bei allen Versuchen an Bauteilen ohne Schubbewehrung kam es zu einem Biegeschubversagen (siehe Abbildung 2.3), bei Bauteilen mit geringer Schubbewehrung führte ein Versagen der Bügelbewehrung zum Versagen (siehe Abbildung 2.13 (a)). Die Tragfähigkeit der Druckstrebe bei Bauteilen mit Schubbewehrung ist bei den hier gesammelten Experimenten nicht maßgebend (siehe Abbildung 2.13 (b))

Generell lässt sich feststellen, dass Versuche aus der Literatur niemals Erfahrungen und Messdaten aus eigenen experimentellen Untersuchungen ersetzen können. Eine Datenbank ist für die Absicherung von Modellen und für Normenvergleiche zwar unabdinglich, für eine gezielte Untersuchung von bestimmten Einflüssen fehlen jedoch zumeist die notwendigen Messdaten.

NORMENVERGLEICH 4

4.1 Allgemeines

Dieses Arbeitspaket dient dazu bestehende internationale Bemessungsansätze bezüglich der Querkrafttragfähigkeit miteinander zu vergleichen und Unterschiede aufzuzeigen. Dar-

über hinaus wird mittels einer Parameterstudie die Berücksichtigung verschiedener Einflussfaktoren genauer analysiert und interpretiert. Dabei sollen folgende internationale Normenwerke in Betracht gezogen:

- Eurocode 2:
- Österreich: ÖNORMEN EN 1992-1-1 [108], ÖNORM B 1992-1-1 [109], ÖNORM EN 1992-2 [110], ÖNORM B 1992-2 [111],
- Deutschland: DIN EN 1992-1-1 + nationales Anwendungsdokument [106,107]
- Frankreich: NF EN 1992-1-1/NA [112] •
- Schweizer Betonbaunorm SIA 262 [105] •
- Amerikanische Betonbaunorm ACI318 [104] •
- Kanadische Betonbaubaunorm CSA A23.03 [102] •
- fib Model Code 2010 [101] •

Des Weiteren wird eine Validierung der unterschiedlichen Ansätze an den in Abschnitt 3.3 erstellten Versuchsdatenbanken vorgenommen.

Zusätzlich werden auch bereits zurückgezogene österreichische Normenwerke der Serie ÖNORM B42xx analysiert.

4.2 Übersicht über die Querkraftbemessung internationaler Normen

4.2.1 Bauteile ohne Querkraftbewehrung

4.2.1.1 Eurocode 2

 C_{Rdc}

 k_1

Die Querkraftbemessung von Bauteilen ohne rechnerisch erforderlicher Querkraftbewehrung erfolgt in Österreich und Deutschland gemäß Eurocode 2 [106,108] anhand folgender empirischer Gleichung:

$$V_{Rd,c} = \max \begin{cases} \begin{bmatrix} C_{Rd,c} k \left(100 \rho_l f_{ck} \right)^{1/3} + k_1 \sigma_{cp} \end{bmatrix} b_w d \\ \begin{bmatrix} \nu_{\min} + k_1 \sigma_{cp} \end{bmatrix} b_w d \end{cases}$$
(4.1)

mit

Kalibrierfaktor (NAD)

 $\rho_l = \frac{A_{sl}}{b \ d} \le 0,02$

Längsbewehrung im Zuggurt

 $k = 1 + \sqrt{\frac{200}{d}} \le 2,0 \text{ mit d in mm}$

Faktor zur Berücksichtigung des Maßstabseinflusses

Kalibrierfaktor zur Berücksichtigung einer Normalkraft aus Vorspannung oder äußerer Belastung (NAD)

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 f_{cd}$$
Normalspannung im Beton aus infolge Normalkraft
aus Vorspannung oder äußerer Belastung v_{min} Aufnehmbare Mindestschubspannung in Abhän-
gigkeit der Bauteilabmessungen (NAD) b_w Geringste Querschnittsbreite im Zuggurt

Jene Werte, welche in der Klammer mit NAD gekennzeichnet sind, können national festgelegt werden und unterscheiden sich in Österreich und Deutschland (siehe Tabelle 4.1).

Tabelle 4.1: Länderspezifisch festgelegt Werte zur Querkraftbemessung von Bauteilen ohne
Querkraftbewehrung

Parameter	Österreich [109]	Deutschland [107]	Frankreich [112]
$C_{Rd,c}$	0,18	0,15	0,18
	γ_c	γ_c	γ_c
k_1	0,15	0,12	0,15
$ u_{\min}$	$0,035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$	für d ≤ 600 <i>mm</i>	$0,053$ $k^{3/2}$ $f^{1/2}$
		$\frac{0,0525}{\dots} \cdot k^{3/2} \cdot f_{ck}^{1/2}$	$\frac{\gamma_c}{\gamma_c} \cdot \kappa \cdot j_{ck}$
		γ_c	0,34
		für d≥800 <i>mm</i>	$\frac{\gamma_{ck}}{\gamma_{ck}}$
		$\frac{0,0375}{k^{3/2}} \cdot k^{3/2} \cdot f_{sk}^{1/2}$	bei Umlagerungskapazitä-
		γ_c	ten in Querrichtung

Die empirische Gleichung 4.1 hat ihren Ursprung im CEB-FIP Model Code 1990 [100] und ähnelt sehr dem mittels Regressionsanalyse abgeleiteten Modell von Zsutty [32] (siehe Abschnitt 2.3.3.5). Zsutty's Gleichung erweitert um einen Faktor für den Maßstabseinfluss und zur Berücksichtigung der Schubschlankheit a/d ergibt das Querkraftmodell für Bauteile ohne Schubbewehrung gemäß CEB-FIP Model Code 1990 [100]. Dieser Ansatz wurde leicht abgewandelt und durch Adaptierung des Vorfaktors [63] in den Eurocode 2 [106,108] übernommen. Durch Einführen eines zusätzlichen Terms zur Berücksichtigung des Effektes einer Normalspannung wurde dieses Modell auch für Bauteile mit Vorspannung bzw. äußerer Normalkraft anwendbar.

4.2.1.2 SIA 262

mit

Die Querkraftbemessung für Bauteile ohne Schubbewehrung beruht in der Schweiz auf einer Vereinfachung des Modells des kritischen Biegeschubrisses nach Muttoni [7] (siehe Abschnitt 2.3.3.3). Die Querkrafttragfähigkeit ergibt sich demnach zu

$$v_{Rd} = k_d \tau_{cd} d \tag{4.2}$$

$$k_d = \frac{1}{1 + \varepsilon_v dk_g}$$
 Beiwert zur Berücksichtigung des Dehnungszustands und der Maßstabsabhängigkeit

🔊 AISIFI I INIAIG 🔰 bm🔍 🚺

$$\tau_{cd} = 0.3 \frac{\sqrt{f_{ck}}}{\gamma_c}$$
Einfluss der Betondruckfestigkeit auf den Querkraftwiderstand $\mathcal{E}_v = \frac{f_{sd}}{E_s} \frac{m_d}{m_{Rd}}$ Faktor zur Abschätzung des Dehnungszustandes $k_g = \frac{48}{D_{max} + 16}$ Einfluss des Größtkorndurchmesser D_{max}

Bei Leichtbeton oder bei Druckfestigkeiten f_{ck}>70N/mm² ist aufgrund der reduzierten Rissrauhigkeit D_{max}=0 einzusetzen. Bei vorgespannten Bauteilen wird der Einfluss der zusätzli-

chen Normalkraft durch Abänderung des Koeffizienten $\varepsilon_v = \frac{f_{sd}}{E_s} \cdot \frac{m_d - m_{Dd}}{m_{Rd} - m_{Dd}}$ abgedeckt.

4.2.1.3 ACI 318

2

Die in der amerikanischen Norm verankerten Bemessungsformeln für Stahlbetonbauteile ohne Querkraftbewehrung wurden im Zuge des ACI-ASCE Shear Committee erarbeitet und stammen aus dem Jahre 1962 [64]. Die an ca. 200 Versuchen kalibrierte Standardbemessungsgleichung lautet

$$V_{c} = \left(0,16\lambda\sqrt{f_{c}'} + 17\rho_{w}\frac{V_{u}d}{M_{u}}\right)b_{w}d \le 0,29\lambda\sqrt{f_{c}'}b_{w}d$$

$$\tag{4.3}$$

mit

$$\begin{array}{lll} \lambda & \mbox{Abminderungsfaktor bei Verwendung von Leichtbeton} \\ \sqrt{f_c^{'}} \leq 8,3 \ \mbox{N/mm}^2 & \mbox{Zugfestigkeit des Betons} \\ V_u, M_u & \mbox{Zugehörige Bemessungsschnittgrößen im betrachteten} \\ \end{array}$$

Der zweite Term p_wV_ud/M_u der Gleichung 4.3 beruht auf der Erkenntnis, dass mit Zunahme der Spannung in der Bewehrung die Querkrafttragfähigkeit eines Bauteiles sinkt. Für praxisrelevante Fälle wird dieser Einfluss jedoch vernachlässigbar und kann zu $0,01 \cdot \sqrt{f_c}$ angenommen werden. Gleichung 4.3 kann somit vereinfacht werden zu

$$V_c = 0.17\lambda \sqrt{f_c'} b_w d \tag{4.4}$$

Auch bei vorgespannten Bauteilen kann eine vereinfachte oder detaillierte Methode angewendet werden. Beide Ansätze basieren auf den Arbeiten von MacGregor [65]. Wenn die effektive Vorspannkraft mehr als 40% der Zugfestigkeit der Längsbewehrung beträgt kann die vereinfachte Methode angewendet werden (siehe Gleichung 4.5)

$$0,17\lambda\sqrt{f_c'}b_w d \le V_c = \left(0,05\cdot\lambda\sqrt{f_c'}+4,8\frac{V_u d_p}{M_u}\right)b_w d \le 0,42\lambda\sqrt{f_c'}b_w d$$

$$(4.5)$$

🔊 AISIFI I INIAIG 🔰 bm🔍 👔

mit $d_p \ge 0.8h$ Abstand zwischen Betondruckrand und Spanngliedachse bzw. Längsbewehrung

Die detaillierte Methode geht von zwei verschiedenen Versagensmechanismen bei vorgespannten Bauteile ohne Schubbewehrung aus: Die Biegeschubtragfähigkeit wird demnach berechnet mit

$$V_{ci} = 0.05\lambda \sqrt{f_c} \cdot b_w d_p + V_d + \frac{V_i \cdot M_{cre}}{M_{max}} \ge 0.14 \cdot \lambda \sqrt{f_c} \cdot b_w d_p$$
(4.6)

mit

$$\begin{split} M_{cre} &= \frac{I}{y_t} \cdot \left(0,5\lambda \sqrt{f_c'} + f_{pe} - f_d \right) & \text{Rissmoment} \\ M_{\max}, V_i & \text{Maximales Biegemoment mit zugehöriger Querkraft} \end{split}$$

Querkraft infolge Eigengewicht.

Der zweite Versagensmodus ist dadurch gekennzeichnet, dass sich der Schubriss durch Überschreitung der Hauptzugspannung im Steg bildet und nicht aus einem bereits vorhandenen Biegeriss. Durch Vereinfachung einer Hauptzugspannungsberechnung im ungerissenen Zustand ergibt sich die Stegzugtragfähigkeit zu

$$V_{cw} = \begin{pmatrix} 0, 29 \cdot \lambda \sqrt{f_c'} + 0, 3 \cdot f_{pc} \end{pmatrix} \cdot b_w d_p + V_p$$
(4.7)
mit f_{pc}
Druckspannung infolge Vorspannung im Querschnitsschwer-
punkt

*V*_{*p*} Vertikalkomponente der Vorspannkraft

4.2.1.4 CSA A23.3

 V_d

Die Querkraftbemessung gemäß der kanadischen Betonbau sowie der amerikanischen Brückenbaunorm geht auf eine Vereinfachung der "Modified Compression Field Theory" zurück. Das sich der Formelapparat sowie die Nomenklatur nicht unterscheiden wird auf Abschnitt 2.3.3.2 verwiesen.

4.2.1.5 fib Model Code 2010

Mit der Veröffentlichung des fib Model Code 2010 (MC2010) [101] wurde eine neue Bemessungsphilosophie initiiert, mit welcher durch Anwendung verschiedener Näherungsstufen [48] ("Levels of Approximations") die Querkrafttragfähigkeit je nach Bemessungsaufgabe entsprechend berechnet werden kann. Je höher die Näherungsstufe desto genauer werden die einzelnen Einflussparameter in Betracht gezogen, es steigt jedoch auch der Aufwand dementsprechend. Die Grundgleichung der Querkrafttragfähigkeit entspricht in allen Näherungsstufen

🖉 AISIFI I INIAIG 🔰 bm 🔍 🚺

$$V_{Rd,c} = k_v \frac{\sqrt{f_{ck}}}{\gamma_c} z b_w$$
(4.8)

Der Beiwert k_v ergibt sich in ersten Näherungsstufe (LoA I) zu

$$k_{\nu} = \frac{180}{1000 + 1,25z}$$
 mit z in mm (4.9)

bzw. in zweiter Näherung (LoA II) zu

$$k_{\nu} = \frac{0.4}{(1+1500\varepsilon_x)} \cdot \frac{1300}{(1000+k_{dg}z)}$$
(4.10)

mit

$$k_{dg} = \frac{52}{16 + d_g} \ge 0,75$$

Faktor zur Berücksichtigung des Größt-
korndurchmessers
Größtkorndurchmesser

Die Querkrafttragfähigkeit eines Bauteiles wird demnach maßgebend vom vorherrschenden Dehnungszustand bestimmt, welcher in Form der Längsdehnung ε_x auf halber Höhe der statischen Achse berücksichtigt wird:

$$\varepsilon_{x} = \frac{1}{2E_{s}A_{s}} \left(\frac{M_{Ed}}{z} + V_{Ed} + N_{Ed} \left(\frac{1}{2} \mp \frac{\Delta e}{z} \right) \right) \text{mit z in mm}$$
(4.11)

Bei vorgespannten Bauteilen kann die Dehnung folgendermaßen bestimmt werden:

$$\varepsilon_{x} = \frac{\left(\frac{M_{Ed}}{z} + V_{Ed} + N_{Ed} \frac{\left(z_{p} - e_{p}\right)}{z}\right)}{2\left(\frac{z_{s}}{z}E_{s}A_{s} + \frac{z_{p}}{z}E_{p}A_{p}\right)} \text{ mit z in mm}$$

$$(4.12)$$

Bei Bauteilen aus Leichtbeton oder einer Betondruckfestigkeit f_{ck} >70 N/mm² wird aufgrund der verringerten Rissreibungskapazität der Größtkorndurchmesser mit d_g=0 angenommen. Das im MC2010 vorgeschlagene Querkraftmodell basiert in seinen Grundzügen auf der SMCFT von Bentz et al [8].

4.2.2 Bauteile mit Querkraftbewehrung

4.2.2.1 Eurocode 2

Die Bemessung von Bauteilen mit Querkraftbewehrung basiert gemäß dem Grunddokument des Eurocode 2 [106,108] auf einem Fachwerkmodell mit variabler Druckstrebenneigung (siehe Abschnitt 2.4.2.2). Die Druckstrebenneigung θ darf dabei zwischen den Grenzen 21,8° (tan θ =0,4) und 45° (tan θ =1,0) frei gewählt werden. Die geneigten Druckstreben (Gleichung 2.27) stehen mit den parallelen Gurtkräften und den Zugkräften in der Bewehrung (Gleichung 2.26) im Gleichgewicht. Die Neigung der Druckstreben θ kann national

festgelegt werden, von dem sowohl in Österreich als auch in Deutschland Gebrauch gemacht wurde (siehe Tabelle 4.2). In Österreich wurde der Druckstrebenwinkel θ in Abhängigkeit der Spannung in der Längsbewehrung festgelegt. In Deutschland wurde ein komplett anderer Weg gewählt indem man das Fachwerkmodell mit variabler Druckstrebenneigung θ in ein Fachwerkmodell mit Rissreibung (siehe Abschnitt 2.4.2.3) verwandelte und somit einen additiven Betontraganteil V_c berücksichtigt, welcher im Grunddokument ursprünglich nicht vorgesehen wurde. Diese zusätzliche Tragkapazität wird nun nicht direkt, sondern über eine geringere Neigung der Druckstreben miteinbezogen.

Parameter	Österreich [109]	Deutschland [107]
Druckstrebennei- gung	bei: $\sigma_{sd} = f_{yd}$ $30,96^\circ \le \theta \le 45^\circ$	$18,4^{\circ} \le \theta = \frac{1,2+1,4\sigma_{cd} / f_{cd}}{1 - V_{Rd,cc} / V_{Ed}} \le 45^{\circ}$
θ	bei $\sigma_{sd} = 0$:	mit Betontraganteil
	$21, 4^{\circ} \le \theta \le 45^{\circ}$ dazwischen darf linear inter- poliert werden	$V_{Rd,cc} = 0,24 \cdot f_{ck}^{1/3} \cdot \left(1 - 1, 2\frac{\sigma_{cd}}{f_{cd}}\right) \cdot b_w \cdot z$
Abminderungfaktor für unter Querzug- gerissenen Beton v	$v = v_1 = 0, 6 \cdot \left(1 - \frac{f_{ck}}{250}\right)$	$v = 0,75 \cdot \left(1, 1 - \frac{f_{ck}}{250}\right) \le 0,75$
Einfluss der Vor-	$\alpha_{cw} = f(\sigma_{cp})$	$\alpha_{cw} = 1,0$
spannung auf die	mit	
fähigkeit α_{cw}	$\sigma_{cp} = \frac{N_{Ed}}{A_c}$	
Mindestquerkraft- bewehrung	$\rho_{w,\min} = 0,15 \cdot \frac{f_{ctm}}{f_{yd}}$	$\rho_{w,\min} = 0.16 \cdot \frac{f_{ctm}}{f_{yd}}$
$P_{w,\min}$		

 Tabelle 4.2: Länderspezifisch festgelegte Werte zur Querkraftbemessung von Bauteilen

 ohne Querkraftbewehrung

4.2.2.2 SIA 262

Die Grundlage für die Bemessung von Bauteilen mit Schubbewehrung gemäß SIA 262 [105] ist ein starr-plastisches Spannungsfeld mit variabler Neigung der Druckspannungsfelder, wobei der Nachweis jedoch auf Querschnittsebene geführt wird (siehe Abschnitt 2.4.2.2). In Anlehnung an [7] wurde in der neuüberarbeiteten Version des SIA 262 zwei Näherungsstufen eingeführt. Die erste Stufe entspricht der Vorgehensweise des Eurocode 2 [106,108], bei dem Grenzen für den Druckstrebenwinkel α und der Abminderungsfaktor k_c der Druckstrebentragfähigkeit aufgrund des vorherrschendes Querzugs vorgegeben werden.

$$\alpha_{\min} \le \alpha \le 45^{\circ} \tag{4.13}$$

🔊 AISIFI I INIAIG 🔰 bm🔍 🚺

 $\alpha_{\rm min} = 30^{\circ}$ im Normalfall mit

$$\alpha_{\min} = 25^{\circ}$$
 bei bedeutender Drucknormalkraft

bei bedeutender Zugnormalkraft oder plastischen Gurtverformungen $\alpha_{\rm min} = 40^{\circ}$

Die zweite Näherungslösung basiert hingegen auf verallgemeinerten Spannungsfeldern nach [43,44], bei denen α und kc in Abhängigkeit des Dehnungszustandes auf halber Höhe des statischen Hebelarmes z berechnet werden:

$$20^\circ + 10000 \cdot \varepsilon_x \le \alpha \le 45^\circ \tag{4.14}$$

Längsdehnung auf halber Höhe des inneren Hebelarms z mit $\mathcal{E}_{r} \geq 0$

Für den Reduktionswert k_c unter der Annahme, dass die Hauptdruckstauchung ϵ_2 =0,002 beträgt, gilt

$$k_c = \frac{1}{1, 2 + 55\varepsilon_1} \le 0,65 \tag{4.15}$$

 $\varepsilon_1 = \varepsilon_x + (\varepsilon_x - 0.002) \cot^2 \theta$ Hauptzugdehnung auf Basis des Mohr'schen Dehmit nungskreises

Die Querkrafttragfähigkeit für senkrechte Bügel ergibt sich somit zu

$$V_{Rd,s} = \frac{A_{sw}}{s} z f_{sd} \cot \alpha$$
(4.16)

bzw. ist auf

$$V_{Rd,c} = b_w z k_c f_{cd} \sin \alpha \cos \alpha$$
(4.17)
mit
$$f_{cd} = \eta_{fc} \cdot \frac{f_{ck}}{\gamma_c}$$
Bemessungswert der Druckfestigkeit mit $\eta_{fc} = \left(\frac{30}{f_{ck}}\right)^{1/3} \le 1,0$

begrenzt.

Die geforderte Mindestquerkraftbewehrungsgehalt pw.min bei Balken beträgt

$$\rho_{w,\min} = 0,001 \cdot \sqrt{\frac{f_{ck}}{30}} \frac{500}{f_{sk}}$$
(4.18)

4.2.2.3 ACI 318

Die Querkrafttraganteil der Schubbewehrung gemäß ACI 318 [104] basiert auf einem parallelgurtigen 45° Fachwerk, ergänzt durch einen aus Versuchen bestimmten Betontraganteil V_c.

$$V_R = V_s + V_c \tag{4.19}$$

Die zusätzliche Tragkapazität des Betons Vc beruht auf den in Abschnitt 4.2.1.3 erläuterten Ansätzen, wodurch ein gleitender Übergang von Bauteilen ohne und mit Querkraftbewehrung besteht. Der Querkraftwiderstand der Querkraftbewehrung gemäß Mörsch'schen Fachwerk beträgt

$$V_{s} = \frac{A_{v}}{s} f_{yt} d \le 0,66 \sqrt{f_{c}} b_{w} d$$
(4.20)
mit
$$\frac{A_{v}}{s}$$

$$f_{yt}$$
Fläche der Querkraftbewehrung in mm²/m
Fließgrenze der Querkraftbewehrung
Die Mindestquerkraftbewehrung wird darin vorgeschlagen zu

$$A_{v,min} = 0,062\sqrt{f_c} \frac{b_w s}{f_{yt}} \ge \frac{0,35b_w s}{f_{yt}}$$
(4.21)

4.2.2.4 CSA A23.3

In der kanadischen Betonbaunorm CSA A23.3 [102] stützt sich die Querkraftbemessung auf der "Simplified Modified Compression Field Theory" von Bentz et al. [8] (siehe dazu Abschnitt 2.3.3.2). Ähnlich der amerikanischen Bemessungsnorm ACI 318 [104] wird neben dem Traganteil der Querkraftbewehrung, dem Beton ein Querkraftwiderstand Vc zugetraut. Darüber hinaus wird auch hier zwischen Bauteilen ohne und mit Querkraftbewehrung ein gleitender Übergang vorgesehen, womit der Betontraganteil sich mit den in Abschnitt 4.2.1.4 angeführten Gleichungen ermitteln lässt. Der Druckstrebenwinkel θ wird dabei in Abhängigkeit der Längsdehnung ε_x bestimmt

$$\theta = 29^\circ + 7000 \cdot \varepsilon_x \le 75^\circ \tag{4.22}$$

Der Querkraftwiderstand der Querkraftbewehrung ergibt sich somit zu

$$V_{s} = \frac{\phi_{s}A_{v}f_{y}d_{v}\cot\theta}{s}$$
(4.23)
mit $\frac{A_{v}}{s}$
 ϕ_{s}
 d_{v}
Fläche der Querkraftbewehrung in mm²/m
Teilsicherheitsfaktor für Bewehrungsstahl
Statischer Hebelarm
Die Querkrafttragfähigkeit der Druckstreben ist auf

Die Querkrafttragfähigkeit der Druckstreben ist auf

$$V_{r,\max} = 0.25\phi_c f_c' b_w d_v$$
(4.24)

zu begrenzen.

Eine Mindestquerkraftbewehrung ist in folgender Höhe anzuordnen

$$A_{v} = 0,06\sqrt{f_{c}} \frac{b_{w}s}{f_{yt}}$$
(4.25)

4.2.2.5 fib Model Code 2010

Die Bemessung schubbewehrter Bauteile anhand des fib Model Code 2010 [101] gliedert sich in drei Näherungstufen (Levels of Approximation - LoA), welche auf der Verallgemeinerten Spannungsfeldmethoden (VSF) [43] und der Simplified Modified Compression Field Theory (SMCFT) [8] basieren. Die erste Stufe, welche für die Vorbemessung angedacht ist, geht wie im Eurocode 2 [106,108] von einem Fachwerkmodell mit variabler Druckstrebenneigung θ aus, wobei im MC2010 konservativere Werte für die Winkel der Druckstreben θ angegeben werden. Der zweite LoA beruht wie in der SIA 262 [105] (siehe Abschnitt 4.2.2.2) auf den Verallgemeinerten Spannungsfeldmethoden, in welchen die Neigung des Druckspannungsfeldes θ (siehe Gleichung 4.14) in Abhängigkeit der Längsdehnung ϵ_x (siehe Gleichung 4.11 u. 4.12) 4.12 auf halber Höhe der statischen Achse z bestimmt wird. Die dritte Näherungsstufe (LoA III) stellt eine Kombination aus SMCFT und VSF dar. Der Ansatz geht also von einem zusätzlichen Betontraganteil Vc aus, welcher anhand Gleichung 4.8 bestimmt werden kann. Abweichend von der Vorgehensweise bei Bauteilen ohne Querkraftbewehrung wird bei Schubbewehrung der Faktor k_v in Abhängigkeit der Ausnützung der Druckstrebentragfähigkeit V_{Ed}/V_{Rd.max} angegeben. Durch Elimination des zweiten Terms für den Maßstabseinfluss aus Gleichung 4.8 ergibt sich der Beiwert zu

$$k_{\nu} = \frac{0.4}{\left(1 + 1500\varepsilon_{x}\right)} \cdot \left(1 - \frac{V_{Ed}}{V_{Rd,\max}\left(\theta_{\min}\right)}\right) \ge 0$$
(4.26)

Die Neigung der Druckstrebe θ entspricht jener aus Näherungsstufe II (Gleichung 4.14).

4.2.2.6 Zusammenfassung

Tabelle 4.3 zeigt eine Zusammenfassung über die Berücksichtigung der für die Querkraftbemessung der Querkraftbewehrung wesentlichen Parameter: Druckstrebenneigung θ und zusätzlicher Betontraganteil V_c.

Para-	FC2 AUT	FC2 GFR	SIA 262	ACI 318	CSA	MC2010
i uiu						
meter					A23.03	LOAIII
θ	variabel	$f(V_{a})$	$f(\varepsilon_{y})$	45°	$f(\varepsilon_{y})$	f(ɛ,)
v	Variabol	1(*0)		10		1(0,)
Vc	nein	ja	nein	ja	ja	ja

Tabelle 4.3: Übersicht über die Berücksichtigung verschiedener Parameter in internationalen Normen

bm

Die Bemessung von Bauteilen aus Stahlbeton und Spannbeton erfolgte in Österreich bis zur Einführung des Eurocode 2 [108,109,110,111] nach zwei getrennten Normenwerken. Wie auch heute existierten früher neben den allgemein gültigen Berechnungsrichtlinien sogenannte "Brückenbaunormen", welche ergänzende Bestimmungen bezüglich der Querkraftbemessung sowie konstruktive Vorgaben zur Anordnung der Querkraftbewehrung enthielten. Im folgenden Abschnitt werden die Regelungen, der ab 1950 gültigen Bemessungsnormen der Serie ÖNORM B 42xx getrennt in Stahl- und Spannbeton erläutert und etwaige Abweichungen zum Brückenbau aufgezeigt. Darüber hinaus wird auf etwaige Unterschiede bei Straßen- und Eisenbahnbrücken hingewiesen.

Abbildung 4.1: Übersicht über die Normenentwicklung der Bemessung von Brücken aus Stahl- und Spannbeton ab dem Jahre 1950 in Österreich

Die rege Forschung auf dem Gebiet der Schubtragfähigkeit von Stahlbeton- und Spannbetonbauteilen im letzten Jahrhundert führte zur stetigen Weiterentwicklung und Modifikation der Berechnungsmodelle, welche in weiterer Folge Eingang in die Nachweisformate der Normen fanden. Dies spiegelt auch die in Abbildung 4.1 dargestellte Übersicht über die Entwicklung der Bemessungsnormen von Betonbrücken in Österreich wieder. Die Regelungen zur Querkraftbemessung wurden in Österreich über die Jahre hinweg stets modifiziert und vor allem adaptiert.

4.3.1 Querkraftbemessung bei Stahlbetonbrücken

Die Ausführungen der ÖNORM B4200 Teil 4 [115] zur "Schubsicherung" von Stahlbetonbauteilen im Jahre 1957 betrugen gerade einmal eine halbe DIN A4 Seite Die Schubbemessung für Bauteile ohne Querkraftbewehrung erfolgte auf einem Hauptzugspannungsnachweis in der Nulllinie im gerissenen Zustand (siehe Gleichung 4.27), wobei der Schubspannungsverlauf auf Basis der Arbeiten von Mörsch [29] gewählt wurde.

$$\tau_0 = \frac{Q}{b_0 \cdot z} \le \tau_{0,zul} \tag{4.27}$$

Unter Einhaltung eines aus Versuchen abgeleiteten Grenzwertes der Hauptzugspannungen τ_{zul} konnte auf eine Querkraftbewehrung verzichtet werden. In Bereichen, wo dieser jedoch überschritten wurde, mussten die schiefen Hauptzugkräfte mit Querkraftbewehrung aufgenommen werden. Da die Hauptzugspannungen in der Nulllinie unter 45° geneigt sind, basierte die Bemessung der Querkraftbewehrung auf einem Mörsch'schen Fachwerk. Für den Brückenbau wurde eine höhere Sicherheit gefordert, weshalb darin die zulässigen Spannungen etwas konservativer angesetzt wurden.

Tabelle 4.4: Zulässige Spannungen in N/mm² zum Nachweis der "Schubsicherung" gemäß ÖNORM B 4200:1957 [115] (HB=Hochbau) und ÖNORM B 4202:1958 [120]bzw. ÖNORM B 4203:1963 [122] (BB=Brückenbau)

	B160		B225		B300		B400	
f _{ck} ONR 24008 [114]	5,8		11,4		17,8		26,4	
	HB	BB	HB	BB	HB	BB	HB	BB
τ _{0,zul}	0,6	0,5	0,8	0,7	1,0	0,9	1,2	1,1
$ au_{max}$	1,5	1,3	2,0	1,8	2,5	2,3	3,0	2,7
σ _e (St III)	220	200	246	220	246	220	246	220

Die maximal vertretbaren schrägen Hauptzugkräfte mussten sinngemäß ebenso begrenzt werden (τ_{max}). Ein Betontraganteil durfte nicht in Rechnung gestellt werden. Für Stahlbetonbalken wurde im Gegensatz zum Spannbeton schon damals ein verbindlicher Wert zur Mindestquerkraftbewehrung angeführt:

$$\min F_b = 25b_0 \frac{\tau_0}{\sigma_e} \tag{4.28}$$

Aufbauend auf den Arbeiten von Kupfer [39] und Leonhardt [20] wurde dem Beton ein gewisser Traganteil zugetraut, welcher in Form eines Abzugwertes in die Überarbeitung der ÖNORM B4200:1969 [116] übernommen wurde. Die Schubbewehrung musste demzufolge nicht mehr für die gesamte Schubspannung τ_0 abgedeckt werden. Im Gegensatz zur Be-

rechnungsnorm für Eisenbahnbrücken (ÖNORM B4203:1963 [122] + Ergänzende Bestimmungen [123]) durfte der Betontraganteil jedoch ab 1975 für Straßenbrücken (ÖNORM B4202:1975 [121]) nicht mehr angesetzt werden.

Tabelle 4.5: Zulässige Spannungen τ₁ in N/mm² zum Nachweis der "Schubsicherung" gemäß ÖNORM B 4200-8:1969 [116];1971 [117] und 1979 [118]

	B160	B225	B300	B400	B500	B600
τ1	0,2	0,3	0,4	0,5	0,6	0,7

Bei Plattentragwerken konnte auf eine Schubbewehrung verzichtet werden, wenn die zulässige Schubspannung τ_1 gemäß Tabelle 4.5 bzw. τ_1 in Abhängigkeit des Bewehrungsgrad gemäß nachstehender Gleichung

$$\tau_{1}^{'} = 0,12 \cdot \sigma_{p} \sqrt{(w + w^{'})w_{g}}$$
mit
$$w = \frac{\mu \cdot \sigma_{s}^{*}}{\sigma_{p}}, w^{'} = \frac{\mu^{'} \cdot \sigma_{s}^{*}}{\sigma_{p}}$$
Bewehrungsgrad der Zug- und Druckbewehrung
$$w_{g}$$

$$\sigma_{p}$$
Grenzbewehrungswert
$$Maximal zulässige Betonspannung$$
(4.29)

nicht überschritten werden.

Während im Vergleich zur Vorgängernorm die zulässigen Spannungen τ_{zul} drastisch gesenkt wurden, kam es bei der maximalen Schubspannung $\tau_{max} \leq 10 \cdot \tau_1 zu$ einer Erhöhung der zulässigen Spannungen.

Bei Balken wurde eine Mindestquerkraftbewehrung in der Höhe von

$$f_{eB} = f_{ew} = 85b_0 \frac{\tau_1}{\sigma_e^*}$$
(4.30)

gefordert.

In der Ausgabe aus dem Jahre 1979 [118] erfolgte in Österreich normativ die Umstellung auf SI-Einheiten.

Die letzte Überarbeitung der ÖNORM Serie B4200 - 8 erfolgte im Jahre 1996 [119]. Um die Aufnahme der schrägen Zugkräfte in Platten ohne Schubbewehrung zu gewährleisten, darf der Wert $0.8 \cdot \tau_1$ gemäß Tabelle 4.5 oder

$$\tau_1 = 0,046 \cdot \sigma_p \sqrt{(w + w')}$$
 (4.31)

nicht überschritten werden. Die zulässigen Spannungen wurden auch in dieser Überarbeitung konservativer angesetzt.

Mit der Einführung der ÖNORM B 4700 im Jahre 1995 [124] erfolgte in Österreich der Übergang vom deterministischen zum semiprobablistischen Sicherheitskonzept und somit der erste Schritt in Richtung einer einheitlichen europäischen Normung. Das als "eurocodenahe-Berechnung" titulierte Normenwerk konnte als Alternative zur gleichzeitig gültigen ÖNORM B 4200 angewendet werden und diente somit bis zum Eurocode 2 [108,109,110,111] als Übergangslösung. In Österreich kam somit erstmals ein Fachwerkmodell mit variablem Druckstrebenwinkel zur Anwendung. Außerdem hatte die Querkraftbemessung getrennt nach Bauteilen ohne und mit "Schrägzugbewehrung" zu erfolgen. Die den Beton betreffenden Querkraftwiderstände ($V_{Rd,1}$ oder $V_{Rd,2}$) konnten im Gegensatz zur ÖNORM B 4200 mit semiempirischen Gleichungen ermittelt werden und sind abhängig von der Betonfestigkeitsklasse, dem Längsbewehrungsgrad, der Bauteildicke sowie einer äußeren Längskraft.

4.3.2 Querkraftbemessung bei Spannbetonbrücken

Da Österreich bis 1975 über keine eigene Bemessungsnorm für Spannbeton verfügte, wurden Spannbetonbrücken nach der in Deutschland gültigen DIN 4227 - 1953 [125] bemessen. Die Querkraftbemessung erfolgte darin auf Basis eines Hauptzugspannungsnachweises im ungerissenen Zustand sowohl unter Gebrauchslast als auch unter Bruchlast (siehe Gleichung 2.1). Bei Unterschreitung einer zulässigen Hauptzugspannung $\sigma_{I,zuI}$ konnte auf eine Schubbewehrung verzichtet werden. Es wurde zwar eine Mindestquerkraftbewehrung gefordert, jedoch ohne einen verbindlichen Mindestwert anzugeben.

Die zulässigen Hauptzugspannungen $\sigma_{I,zul}$ sind nach Betongüte, Vorspanngrad (volle oder beschränkte Vorspannung) und nach der Beanspruchungsart (Querkraft, Torsion, Kombination beider) abgestuft [66] (siehe Tabelle 4.6):

Tabelle 4.6: Zulässige Spannungen in N/mm² zum Nachweis der "Schubsicherung" gemäß DIN 4227:1953 [125] unter Gebrauchlast und Bruchlast für beschränkte (BV) bzw. volle (VV) Vorspannung

	B300		B4	50	B600	
	BV	VV	BV	VV	BV	VV
σ _{I,zul} Gebrauchslast	1,6	0,8	2,0	0,9	2,4	1,0
$\sigma_{I,zul}$ Bruchlast	1,6		2,0		2,4	
$\sigma_{I,max}$ Bruchlast	3,2		4,0		4,8	

Bei Überschreitung der zulässigen Hauptzugspannungen unter Bruchlast war nachzuweisen, dass die Zugspannung von einer Bügelbewehrung aufgenommen wird. Da die maximalen Hauptzugspannungen zumeist in der Nulllinie auftreten, entspricht diese der

🔊 AISIFI I INIAIG 🔰 bm💎 🎁

Ein weiterer Kritikpunkt ist die Tatsache, dass die Höhe der Mindestquerkraftbewehrung, welche bei Erfüllung des Hauptzugspannungskriteriums trotzdem erforderlich ist, in das Ermessen des planenden Ingenieurs gelegt wurde. Leonhardt [66] formuliert die dadurch entstandenen Diskrepanzen folgendermaßen:

"Da oberhalb dieser Nachweisgrenze sehr viel Schubbewehrung benötigt wird, war die Versuchung sehr stark, die Stege so dick zu bemessen, dass die schiefe Hauptzugspannung knapp unterhalb der Nachweisgrenze blieb und dann – vor allem bei scharfem Wettbewerb – nur eine sehr schwache Schubbewehrung anzuordnen."

Deshalb wurde 1966 mit den "Zusätzlichen Bestimmungen zu DIN 4227 für Brücken aus Spannbeton" [126] zum einen ein verbindlicher Wert für die Mindestquerkraftbewehrung vorgeschrieben und zum anderen eine reduzierte Querkraftbewehrungsmenge für geringe Überschreitungen der zulässigen Hauptzugspannung eingeführt.

Im Jahre 1975 löste dann die erste österreichische Spannbetonnorm ÖNORM B 4252 [127] die über 20 Jahre lang verwendete DIN 4227 [125] ab. Eigentlich für Spannbeton-Straßenbrücken konzipiert, fand sie bis 1989 ebenso für Spannbeton-Eisenbahnbrücken Anwendung, wobei hier jedoch stets volle Vorspannung gefordert wurde. Die Schubbemessung hatte sowohl auf Gebrauchslast- als auch auf Traglastniveau zu erfolgen. Für volle und beschränkte Vorspannung mussten unter Gebrauchslast die Hauptzugspannungen gemäß Tabelle 4.7 analog zur DIN 4227 [125] im Zustand I begrenzt werden.

Tabelle 4.7: Zulässige Spannungen in N/mm² zum Nachweis der Hauptzugspannungen gemäß ÖNORM B 4252 [127] unter Gebrauchslast (GL) für beschränkte (BV) bzw. volle (VV) Vorspannung

	B300		B400		B500		B600	
	BV	VV	BV	VV	BV	VV	BV	VV
$\sigma_{I,zul} GL$	1,6	0,8	2,0	1,0	2,4	1,2	2,8	1,4
$\sigma_{I,bew}$ Schubbew.	0	,5	0	,6	0	,7	0	,8

In den Bereichen, wo die Hauptzugspannungen unter Gebrauchslast kleiner als $\sigma_{I,bew}$ gemäß Tabelle 4.7 sind, war eine Anordnung einer Mindestquerkraftbewehrung gemäß

ÖNORM B 4200-8 [117,118] ausreichend. Bei Überschreitung von $\sigma_{I,bew}$ ist unter rechnerischer Traglast eine vertikale Stegbewehrung anzuordnen:

$f_{e,\alpha}$ =	$=\frac{redQ^*}{\sigma_e^*\cdot d_0\left(\sin\alpha+\cos\alpha\right)}$	(4.32)
mit	$redQ^* = Q^* - Z \cdot \tan \gamma_z - D_b^* \cdot \tan \gamma_D$	Reduzierte Querkraft unter rechnerischer Trag- last
	Ζ	Zugkraft der Spannbewehrung unter Gebrauch- last
	D_b^*	Resultierende Betondruckkraft unter Traglast
	γ_z, γ_D	Winkel der Zugkraft bzw. Druckgurtkraft
	d_{0}	Querschnittshöhe
	σ^*_{e}	Fließspannung der Querkraftbewehrung
	α	Winkel zwischen Querkraftbewehrung und Sta- bachse

Die Bemessung der Querkraftbewehrung gemäß Gleichung 4.32 basiert somit auf der Mörsch'schen Fachwerkanalogie, wobei die Vertikalanteile der Vorspannkräfte unter Gebrauchslast sowie eines geneigten Druckgurtes von der Querkraft unter Traglast abgezogen werden dürfen.

Mit der letzten Revision der Serie ÖNORM B 425x im Jahre 1989 wurde die Bemessung für Spannbetontragwerke für Eisenbahn- und Straßenbrücken [128, 129] getrennt (siehe Abbildung 4.1). Der Hauptzugspannungsnachweis unter Gebrauchslast hatte nun für unterschiedliche Bauzustände erbracht werden müssen, wobei für Straßen- und Eisenbahnbrücken in Abhängigkeit des Belastungszustandes unterschiedliche zulässige Spannungswerte angegeben wurden.

Abbildung 4.2: Fachwerkmodell

Für den Querkraftnachweis unter rechnerischer Traglast wurde erstmals ein Fachwerkmodell mit variabler Druckstrebenneigung eingesetzt, bei dem zu einem die Druckspannungen in den Betondruckstreben und zum anderen die Zugkräfte in der Bewehrung nachzuweisen

waren. Dabei wurden für Eisenbahn- und Straßenbrücken unterschiedliche Druckstrebenneigungen β sowie eine unterschiedliche maximale Druckfestigkeit der Druckstrebenen angegeben. Die Tragfähigkeit der Druckstreben war begrenzt auf:

$$\sigma_{b}^{*} = \frac{redQ^{*}}{b_{0} \cdot z \cdot \sin^{2} \beta \cdot (\cot \alpha + \cot \beta)} \leq \sigma_{b,zul}^{*} = \begin{cases} 0, 5 \cdot \sigma_{p} \rightarrow \text{Straßenbrücken} \\ 0, 45 \cdot \sigma_{p} \rightarrow \text{Eisenbahnbrücken} \end{cases}$$
(4.33)
mit b_{0}
 $z = 0, 8 \cdot d$
 β
Stegbreite abzüglich des Einfluss des Hüllrohres
Hebelarm der inneren Kräfte
Druckstrebenneigung

Während die Neigung der Druckstreben für die Querkraftbemessung bei Straßenbrücken aus Spannbeton gemäß ÖNORM B 525:1989 [129] ohne besonderen Nachweis zwischen 30° und 45° frei gewählt werden konnte, musste um geringere Druckstrebenneigungen als 45° annehmen zu dürfen bei Eisenbahnbrücken nachgewiesen werden, dass unter Traglast die unterste Bewehrungslage eine geringe Dehnung ε_s als 2,5 ‰ aufweist. Bei komplett überdrückten Querschnitten durfte die Neigung der Druckstreben im Bereich von

$$0,6 \le \tan \beta \le 1,0 \tag{4.34}$$

gewählt werden. Bei Dehnungen ε_s zwischen 0 und 2,5‰ durfte linear interpoliert werden. Die Vorgehensweise entspricht jener, welche in den österreichischen nationalen Anhängen [109,111] zum Eurocode 2 [108, 110] vorgeschlagen werden. Die Querkraftbewehrung wurde nun folgendermaßen ermittelt

$$a_{s\alpha} = \frac{redQ^*}{z \cdot \sin \alpha \cdot (\cot \alpha + \cot \beta)} \cdot \frac{1}{\sigma_s^*}$$
(4.35)

Zur Aufnahme der Zugkräfte wurde eine Mindestquerkraftbewehrung von

$$a_{s\alpha,\min} = \mu_B \cdot b_0 \tag{4.36}$$

gefordert, wobei μ_B in Abhängigkeit der Betongüte zwischen 1,0‰ (B300) und 1,8‰ (B600) variierte.

4.4 Parameterstudie

4.4.1 Internationale Normen

4.4.1.1 Bauteile ohne Querkraftbewehrung

Die in den Abschnitt 4.2.1 angeführten internationalen Normenwerke bzw. die in Abschnitt 4.3.1 angegebenen zurückgezogenen österreichischen Normen wurden hinsichtlich ihrer

verschiedenen Einflussparameter auf die Querkrafttragfähigkeit von Bauteilen ohne Schubbewehrung mittels einer Parameterstudie miteinander verglichen. Die wesentlichsten Einflussparameter in den internationalen Normenwerken lassen sich wie folgt benennen:

- Längsbewehrungsgrad ρ_ι
- Schubschlankheit a/d bzw. Schlankheit I/d
- Betongüte (Druckfestigkeit fc und Zugfestigkeit fct)
- Statische Höhe d
- Größtkorndurchmesser d_g

Bei vorgespannten Bauteilen ohne Schubbewehrung können als zusätzliche beeinflussende Parameter folgende genannt werden:

- Normalspannung σ_{cp}
- Spannstahlmenge ρ_p

Im Zuge der hier durchgeführten Parameterstudie wurde jeweils ein praxisnahes Beispiel gewählt und durch Variation eines der oben angeführten Parameter in einen gewissen Bereich hinsichtlich seiner Beeinflussung analysiert. Die Bemessungssituation wurde für eine Fahrbahnplatte in Querrichtung ausgelegt, d.h. geringe Bauteilhöhe, hohe Einzellasten infolge Verkehr, Beton- und Baustahlgüten wie sie in der Vergangenheit verwendet wurden. Abbildung 4.3 (a) – (e) zeigt den Vergleich der flächenbezogenen Schubspannungen τ_{Rd} in Abhängigkeit der jeweils untersuchten Einflussparameter. Der Widerstand bezieht sich jeweils auf die in der Norm angegebenen Sicherheitsbeiwerte. Da alle untersuchten internationalen Normenwerke auf einem semiprobabilistischen Sicherheitskonzept basieren, unterscheiden sich die Teilsicherheitsbeiwerte auf der Widerstandsseite nur sehr geringfügig, wodurch ein direkter Vergleich zulässig ist.

Abbildung 4.3 (a) zeigt den Einfluss des Längsbewehrunggrades ρ_I auf die Schubtragfähigkeit verschiedener Normenwerke. Es ist ersichtlich, dass die Querkrafttragfähigkeit gemäß SIA 262 im Bereich geringer Längsbewehrungsgrade zum Teil markant höher liegt. Die Zunahme der Schubtragfähigkeit mit ansteigender Biegezugbewehrung verläuft dafür wesentlich flacher als vergleichsweise bei EC2, CSA 23.03. Das vereinfachte Verfahren gemäß ACI 318 vernachlässigt den Einfluss der Längsbewehrung auf den Querkraftwiderstand, weshalb die Linie horizontal verläuft. Dieses Vorgehen steht jedoch klar im Widerspruch mit Versuchsergebnissen.

Der Einfluss der Schubschlankheit a/d (siehe Abbildung 4.3 (b)) wird in den dehnungsbasierten Bemessungsmodellen, wie diese in der SIA 262 und CSA 23.03 Anwendung finden,

über die Zunahme der Dehnung bei größer werdenden Abstand des Lasteinleitungsbereiches berücksichtigt. Größere Dehnungen bedeuten größere Rissweiten w, weshalb gemäß dieser Modellvorstellungen die Rissreibungkapazität abnimmt und dies zu einer geringeren Schubtragfähigkeit führt. Da der Einfluss der Schubschlankheit bekannterweise bei schlanken bzw. schubschlanken Bauteilen eher von untergeordneter Bedeutung ist, wurde im EC2 auf eine Berücksichtigung gezielt verzichtet. Auf den Einfluss der Schubschlankheit a/d bzw. der Schlankheit I/d wird in Kapitel 5.1.1 noch näher darauf eingegangen.

Der Maßstabseinfluss ("size effect") stellt bei Bauteilen ohne Schubbewehrung einen wesentlichen Einflussparameter dar. Die Abnahme der auf die Fläche bezogenen Schubtragfähigkeit mit zunehmender Bauteilhöhe wird im Vergleich zur Vergangenheit in den aktuellen Normen bei beinahe allen hier untersuchten Normenwerken berücksichtigt. Die Ausnahme stellt die amerikanische Betonbaunorm ACI 318 dar, in der kein Einfluss der Bauteilhöhe bei der Querkraftbemessung bis jetzt in Betracht gezogen wurde. Für das hier gewählte Beispiel wird die Abnahme der Schubtragfähigkeit mit zunehmender Bauteilhöhe d gemäß EC2, SIA 262 und CSA 23.03 gleichermaßen berücksichtigt, obwohl in den darin verankerten Modellvorstellungen die Ursache des Maßstabseinflusses auf unterschiedlichen Erklärungen basiert.

Mit zunehmender Druckfestigkeit fc steigt in der Regel auch die Zugfestigkeit fct, welche für den Querkraftwiderstand von schubunbewehrten Bauteilen die maßgebende Festigkeit darstellt. In allen Normenwerken führt eine Erhöhung der Betongüte auch zu einer Zunahme der Schubtragfähigkeit. Bei den Normen, welche die Querkrafttragfähigkeit auf die Rissreibung/Rissverzahnung zurückführen (SIA 262 und CSA 23.03), wird ab einer gewissen Betondruckfestigkeit fc davon ausgegangen, dass die Festigkeit der Zementmatrix höher ist als jene der Gesteinskörnung und somit die Risse die Gesteinskörnung durchtrennen, was wiederum einen negativen Einfluss auf die Rissverzahnung nach sich zieht. Deshalb wird ab einer gewissen Druckfestigkeit fc (siehe Abschnitt 4.2.1) der Größtkorndurchmesser da in der Berechnung auf 0 gesetzt, wodurch die Zunahme der Tragfähigkeit streng genommen nur mehr für Normalbeton eingerechnet werden darf. Abbildung 4.3 (d) zeigt den Vergleich der Querkraftwiderstände für verschiedene Betongüten, wobei die Anwendungsgrenzen bezüglich der Druckfestigkeit fc der jeweiligen Normen eingearbeitet wurden. Während im EC2 die Zunahme mit der dritten Wurzel der Druckfestigkeit fc ansteigt, ist es im nordamerikanischen Raum (ACI 318 und CSA 23.03) bzw. auch in der Schweizer Norm SIA 262 üblich, die Erhöhung des Querkraftwiderstands mit der Quadratwurzel der Druckfestigkeit f_c abzubilden.

Die SIA 262 und die CSA 23.03 charakterisieren die Rissverzahnung neben der Rissweite w, welche mit der Dehnung direkt gekoppelt ist, ebenso über die maximale Größe der Gesteinskörnung d_g. Je größer die Gesteinskörnung desto mehr steigt die Möglichkeit dass sich Risse verzahnen. Wie man anhand von Abbildung 4.3 (e)) sieht, ist der Einfluss des Größtkorndurchmessers d_g relativ gering.

Um den Einfluss einer Vorspannung auf die Schubtragfähigkeit eines Bauteiles ohne Bügelbewehrung zu untersuchen, wurde als maßgebender Einflussparameter die Normalspannung infolge Vorspannung σ_{cp} gewählt. Abbildung 4.4 (a) zeigt die rechnerische Querkrafttragfähigkeit in Abhängigkeit der Normalspannung σ_{cp} , wobei eine konstante Spannstahlspannung σ_{pp} unterstellt wurde. Dies bedeutet, dass mit Zunahme der Normalspannung auch die Spannstahlmenge erhöht wurde. Wie auch Versuchsergebnisse zeigten führt die Erhöhung der Vorspannung zu einer Steigerung der Querkrafttragfähigkeit, wobei die kanadische Norm CSA 23.03 im Vergleich zu anderen internationalen Normenwerke diese deutlich großzügiger ausfallen lässt. Gemäß EC2 wird der Einfluss der Vorspannung über einen additiven Anteil in Abhängigkeit der Normalspannung infolge Vorspannkraft k₁· σ_{cp} miteinbezogen. Die Erhöhung der Schubtragfähigkeit mit zunehmender Spannstahlmenge A_p bleibt dabei im Gegensatz zu anderen Normen unberücksichtigt.

Abbildung 4.3: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen ohne Schubbewehrung in Abhängigkeit verschiedener Einflussparameter: (a) Längsbewehrungsgrad ρ_l (b) Schubschlankheit – M-V Interaktion (c) statische Höhe d (d) Druckfestigkeit f_{ck} (e) Größtkorndurchmeser d_g

Zusätzlich wurde untersucht, inwieweit sich eine Erhöhung der Vorspannkraft P bei gleichbleibender Spannstahlmenge A_p auf den Querkraftwiderstand auswirkt (siehe Abbildung 4.4). Die Ausnützung des Spannstahls wurde hierfür zwischen 50 und 90 Prozent variiert. Während die SIA 262 hierfür keine Erhöhung in der Tragfähigkeit vorsieht, wird gemäß ACI

318, EC2 und CSA 23.03 auch mit konstanter Spannstahlmenge A_p der Widerstand gegenüber Querkraft erhöht.

Abbildung 4.4: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen ohne Schubbewehrung mit Vorspannung in Abhängigkeit der Vorspannkraft: (a) variable Spannstahlmenge (b) konstante Spannstahlmenge

Der Normenvergleich bezüglich der Querkrafttragfähigkeit für Bauteile ohne Querkraftbewehrung konnte die erwartete und bereits vielfach festgestellte Diskrepanz in der Querkraftbemessung bestätigen. Die in den Normen verankerten unterschiedlichen Modellvorstellungen führen dazu, dass sich in gewissen Bereichen zum Teil massive Unterschiede in der Höhe der Schubtragfähigkeit zeigen. Dies trifft meistens auf Bereiche zu, in welchen die Anzahl der verfügbaren Querkraftversuche eher beschränkt ist, z.B. Bauteile mit geringem Längsbewehrungsgrad ρ_i , mit hoher Betondruckfestigkeit f_c oder generell Bauteile mit Vorspannung.

4.4.1.2 Bauteile mit Querkraftbewehrung

Da im Zuge dieses Forschungsvorhabens die Analyse von Bauteilen ohne und mit geringer Schubbewehrung im Vordergrund steht, wurde der Normenvergleich auch gezielt für diesen Bereich durchgeführt. Der Querkraftbewehrungsgrad stellt bei Bauteilen mit Bügelbewehrung den maßgebenden Parameter dar, wobei die für Bauteile ohne Schubbewehrung maßgebenden Parameter ebenso bei Modellvorstellungen mit zusätzlichen Betontraganteil miteinfließen. Da diese Einflussparameter im Vergleich zum Schubbewehrungsgrad ρ_w vergleichsweise nur eine untergeordnete Rolle spielen, wurde bei der Parameterstudie auf eine Untersuchung dieser gezielt verzichtet.

Abbildung 4.5 zeigt einen Vergleich der auf die Fläche bezogenen aufnehmbaren Schubspannung τ_{Rd} im Verhältnis zum Querkraftbewehrungsgrad ρ_w für ein frei gewähltes Praxisbeispiel. Bei den Ansätzen, welche den Dehnungszustand im Schubfeld miteinbezie-

hen (SIA 262, CSA 23.03 und MC2010) wurde vereinfacht eine konstante Dehnung ε_x angenommen. Der statische Hebelsarm wurde dabei mit 0,9·d abgeschätzt, was in den meisten Normenwerken als zulässige Annahme erlaubt ist.

Abbildung 4.5: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen mit Schubbewehrung ohne Vorspannung in Abhängigkeit des Bügelbewehrungsgrades ρ_w: (a) Europäische Normen (b) Vergleich EC2, MC2010, ACI318 und CSA A23.03

Wie in Abbildung 4.5 (a) und (b) ersichtlich, wird die Querkrafttragfähigkeit wesentlich von der Neigung der Druckstreben θ bestimmt. Je flacher die Neigung, desto mehr Bügel können aktiviert werden und desto höher die Querkrafttragfähigkeit. Die geringste Tragfähigkeit ergibt sich demnach für das Mörsch'sche Fachwerk mit einer Neigung von 45° (graue Linie in Abbildung 4.5 (a)). Ansätze, welche auf der Plastizitätstheorie basieren (EC2, MC2010, SIA 262), gehen davon aus, dass im Bruchzustand die Querkraftbewehrung sowie die Druckstreben zwischen den Rissen gleichzeitig die Tragfähigkeit erreichen. Die dadurch unterstellte Rotationsfähigkeit der Druckstreben (variable Druckstrebenneigung) führt zu einem kreisförmigen Verlauf, auch als Plastizitätskreis bezeichnet. Nach unten und oben hin wird die Querkrafttragfähigket von Grenzwerten der Druckstrebenwinkel θ begrenzt, da sich diese Rotationskapazität nicht vollkommen frei einstellen kann. Große Unterschiede ergeben sich im Speziellen in Bereichen, wo der Versagenmechanismus durch ein Erreichen der Druckstrebentragfähigkeit gekennzeichnet ist.

Abbildung 4.6 zeigt einen Vergleich der Querkrafttragfähigkeit im Bereich von geringen Querkraftbewehrungsgraden ρ_w (gemäß EC2, MC2010 und Mörsch'schem Fachwerk) für zwei verschiedene Dehnungszustände ϵ_x . Wie man anhand von Abbildung 4.6 (a) unschwer erkennen kann, liefert das Mörsch'sche Fachwerk die geringste Schubtragfähigkeit. Die flachere Druckstrebenneigung θ =31° gemäß EC2 führt zu einem steileren Verlauf und somit höheren Querkraftwiderständen im Vergleich zum 45° Fachwerk. Bei Annahme einer Längsdehnung ϵ_x =0,001 (θ_{MC2010} =30°) kann gemäß MC2010 Näherungstufe III durch den

bm

Bei Annahme einer höheren Längsdehnung $\varepsilon_x=0,002$ (siehe Abbildung 4.6 (b)) wird gemäß MC2010 eine steilere Druckstrebenneigung $\theta_{MC2010}=40^{\circ}$ sowie ein geringerer Betontraganteil V_c unterstellt, weshalb die Querkrafttragfähigkeit gemäß Eurocode 2 zum Teil höhere Schubwiderstände offerieren kann, als nach MC2010. Bei einer Längsdehnung von 2 Promille auf halber Höhe der statischen Nutzhöhe z ist jedoch auch sicher zu stellen, dass die Biegetragfähigkeit nicht schon bereits erreicht wurde.

Abbildung 4.6: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen mit Schubbewehrung ohne Vorspannung für geringe Bügelbewehrungsgrade ρ_w gemäß EC2, MC2010 LoA III und Mörsch'schen Fachwerk: (a) ϵ_x =0,001 (b) ϵ_x =0,002

Bei vorgespannten Bauteilen mit Schubbewehrung wird der positive Einfluss der Vorspannkraft über eine geringere Druckstrebenneigung θ berücksichtigt. Abbildung 4.7 zeigt die rechnerische Querkrafttragfähigkeit in Abhängigkeit des Querkraftbewehrungsgrades ρ_w unter der Annahme eines vollständig überdrückten Querschnitts.

Abbildung 4.7: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen mit Schubbewehrung mit Vorspannung in Abhängigkeit des Bügelbewehrungsgrades ρ_w: (a) Europäische Normen (b) Vergleich EC2, MC2010, ACI318 und CSA A23.03

Im Bereich von geringen Schubbewehrungsgraden (siehe Abbildung 4.7) ergibt sich aufgrund des zusätzlichen Betontraganteils gemäß MC2010 eine höhere Schubtragfähigkeit als nach EC2. Die Querkrafttragfähigkeit zwischen Mörsch'schem Fachwerk und den derzeit aktuellen Bemessungsnormen können sich zum Teil um den Faktor 2 unterscheiden. Wie schon bei Stahlbetonbauteilen wird bei höheren Längsdehnungen ε_x =0,0005 (siehe Abbildung 4.7 (b)) der Unterschied zwischen EC2 und MC2010 deutlich geringer.

Abbildung 4.8: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen mit Schubbewehrung mit Vorspannung für geringe Bügelbewehrungsgrade ρ_w gemäß EC2, MC2010 LoA III und Mörsch'sche Fachwerk: (a) ε_x=0,000 (b) ε_x=0,0005

Um bei Balken ein sprödes Schubversagen zu verhindern, verlangen sämtliche Bemessungsnormen eine Mindestquerkraftbewehrung $p_{w,min}$, welche abhängig von der Wahl der Betongüte bzw. Betonstahlsorte ist. Die europäischen Normen (EC2) sind bei der Anordnung der minimalen Querkraftbewehrung deutlich konservativer im Vergleich zu den nordamerikanischen Normen ACI 318 und CSA 23.03 (siehe Abbildung 4.9).

bm

Abbildung 4.9: Mindestquerkraftbewehrungsgrad p_{w,min} gemäß internationalen Normenwerken

4.4.2 Aktuelle und zurückgezogene österreichische Normen

In diesem Abschnitt soll ein Vergleich der in Abschnitt 4.3 zusammengefassten und in Österreich gültigen Bemessungsnormen ab 1950 durchgeführt werden. Da sich nicht nur die Bemessungsmodelle mit der Zeit drastisch verändert haben, sondern auch die Sicherheitskonzepte, war es beim direkten Vergleich von Nöten, sämtliche Bemessungsnormen mit einem globalen Sicherheitsfaktor zu versehen. Bei semiprobabilistischen Ansätzen mit Teilsicherheitsfaktoren und Kombinationsbeiwerten ist dies streng genommen nicht möglich. Für den Vergleich wurde jedoch abgeschätzt, dass die Einwirkungsseite einen resultierenden Teilsicherheitsfaktor von γ_E =1,4 aufweist, wodurch sich ein globaler Sicherheitsfaktor von γ_S = 1,5·1,4=2,1 für die Querkraftbemessung gemäß EC2 ergibt. Der globale Sicherheitsfaktor der Stahlbetonnorm ÖN B4200-4:1957 betrug hingegen γ_S = 1,75 bzw. bei der zugehörigen Brückenbaunorm für Straßenbrücken ÖN B 4202:1958 γ_S = 1,85. Dies bedeutet alleine eine Reduktion der zulässigen Schubspannung aufgrund der Verschärfung des Sicherheitskonzeptes von grob 17% bzw. 12% für Brückentragwerke.

Darüber hinaus wurde in der Vergangenheit die Schubspannung auf den inneren Hebelarm z bezogen, während in den aktuellen Bemessungsnormen die Schubspannungen auf die statische Nutzhöhe d bezogen wird. Für den Vergleich war es daher notwendig die zulässigen Schubspannungen der Normenserie ÖN B 42xx auf die Fläche b·d umzurechnen.

Abbildung 4.10 zeigt für Bauteile ohne rechnerisch erforderlicher Schubbewehrung einen Vergleich der zulässigen Schubspannungen τ_{Rd} in Abhängigkeit der charakteristischen Betondruckfestigkeit f_{ck} für eine Stahlbetonplatte mit einem Längsbewehrungsgrad von ρ_{I} =

1,0% und einer statischen Nutzhöhe von d = 0,25m. Die in den alten österreichischen Normenwerke angeführten Betongüten wurden gemäß den Hinweisen der ONR 24008 [114] in die charakteristische Zylinderdruckfestigkeit $f_{ck,cyl}$ umgerechnet.

Abbildung 4.10: Vergleich der zulässigen Schubspannungen τ_{Rd} in Abhängigkeit der charakteristischen Druckfestigkeit f_{ck} österreichischer Betonbaunormen seit 1950

Man kann an Abbildung 4.10 deutlich erkennen, dass in der Normengeneration ÖN B4200-4:1957 und ÖN B4202:1958 dem schubunbewehrten Bauteilen eine wesentlich höhere Schubtragfähigkeit τ_{Rd} zugetraut wurde als dies heutzutage der Fall ist. Mit den umfangreichen experimentellen Untersuchungen auf dem Gebiet der Querkrafttragfähigkeit von Balken ohne Schubbewehrung zwischen 1950 und 1970 (z.B.: Leonhardt [20,51,] oder Kani [21,24]) hat man erkannt, dass die zulässigen Schubspannungen eindeutig zu hoch angesetzt wurden. In Österreich wurden daher im Zuge der umfassenden Überarbeitung der österreichischen Stahlbetonbaunormen zu Beginn der 70er Jahre des letzten Jahrhunderts die zulässigen Schubspannungen τ_{Rd} drastisch reduziert wurden. Mit dieser Revision hat man auch eine vom Längsbewehrungsgrad abhängige zulässige Schubspannung τ_1 für Platten eingeführt. Die zulässigen Schubspannungen τ_{Rd} pendelten sich dann auf einem gewissen Niveau ein, die weiteren Revisionen (1979, 1996, 2001, 2009) brachten zwar stets eine Veränderung, das Ausmaß ist jedoch nicht zu vergleichen mit jener, welcher zu Beginn der 70er Jahre stattfand. Für eine Betongüte B400 (in etwa C30/37 gemäß EC2) ergab sich für eine 0,25m dicke Stahlbetonfahrbahnplatte bemessen nach ÖNORM B 4252:1958 eine doppelt so hohe rechnerische Schubtragfähigkeit τ_{Rd} im Vergleich zu einer nach EC2 ausgelegten Platte. Dies erklärt somit auch, weshalb bei Fahrbahnplatten heutzutage oftmals rechnerisch eine Schubbewehrung erforderlich wird. Für die Nachrechnung

von bestehenden Tragwerken bedeutet dies, dass bei einer vor 1969 bemessenen Stahlbetonplatte ohne Schubbewehrung der Querkraftnachweis nach aktuellem Normenstand nicht mehr erbracht werden kann.

Abbildung 4.11: Vergleich der Querkraftbemessung bei Spannbetonträger: Querkrafttragfähigkeit in Abhängigkeit des Querkraftbewehrungsgrades ρ_w

Die wohl größten Änderungen ergaben sich bei der Querkraftbemessung von Spannbetonträgern (siehe Abschnitt 4.3.2). Um einen Vergleich der verschiedenen über die Jahre stark modifizierten Bemessungsmodelle anzustellen, wurde ein Plattenbalkenquerschnitt mit praxisrelevanten Abmessungen und Materialgüten gewählt (siehe Abbildung 4.11).

Zu Beginn der Spannbetonära basierte die vereinfachte Bemessung im Bruchzustand auf einem Hauptzugspannungsnachweis im ungerissenen Zustand (DIN 4227:1953). Bei Unterschreitung einer von der Betongüte abhängigen zulässigen Hauptzugspannung $\sigma_{1,zul}$ konnte auf einen genaueren Nachweis verzichtet werden (graue punktierte Linie). Bei Überschreitung wurde gefordert, die auftretenden Hauptzugspannungen σ_1 mit Bewehrung abzudecken, was bei maximaler Hauptzugspannung σ_1 auf Höhe der Nulllinie der Mörsch'schen Fachwerksanalogie mit θ =45° entsprach. Dies führte zur Absurdität, dass bei minimaler Unterschreitung der zulässigen Hauptzugspannungen $\sigma_{1,zul}$ nur eine konstruktive Bügelbewehrung anzuordnen war, jedoch bei minimaler Überschreitung sofort eine beachtliche Menge an Querkraftbewehrung erforderlich wurde. In dem hier gewählten Beispiel wäre bei Überschreitung eine zweischnittige Bügelbewehrung Ø20/20cm erforderlich (Schnittpunkt grau punktierte Linie mit blauer Linie). Mit der Überarbeitung der österreichischen Spannbetonnormen 1989 fand in Österreich erstmalig das Fachwerkmodell mit variabler Druckstrebenneigung θ Anwendung, welches bei Verwendung der unteren zulässigen Grenze θ_{min} =30° eine deutlich höhere Querkrafttragfähigkeit als das Mörsch'sche Fachwerk

bm

Abbildung 4.12: Mindestquerkraftbewehrungsgrad ρ_{w,min} gemäß österreichischer Normenwerke

In Österreich wurde für Stahlbeton- und Spannbetonträger stets eine Mindestquerkraftbewehrung $a_{sw,min}$ gefordert und deren Höhe auch normativ festgelegt. Eine Ausnahme stellt bekanntlich DIN 4227:1953 dar. Abbildung 4.9 zeigt den minimalen Querkraftbewehrungsgrad $\rho_{w,min}$ für aktuelle und bereits zurückgezogene österreichische Stahlbetonbaunormen. Die Höhe des Mindestquerkraftbewehrungsgrades hat sich demnach nur minimal verändert, wodurch sich keine wesentlichen Diskrepanzen zum aktuellen Normenstand ergeben.

4.5 Vergleich Normen mit Versuchen aus Datenbank

In diesem Unterabschnitt soll eine Verifikation der in 4.2 angeführten Normenwerke anhand der in den Datenbanken gesammelten Querkraftversuche (siehe Kapitel 3) angestellt werden. Besonderes Augenmerk wird dabei auf den Eurocode 2 gelegt, da dieser den aktuellen Normenstand darstellt und für die Bewertung der Tragfähigkeit bestehender Straßen- und Eisenbahnbrücken gemäß erster bzw. zweiter Stufe der österreichischer Nachrechnungsrichtlinie ONR 24008 [114] anzuwenden ist. Dieser Vergleich soll dazu dienen, um zu überprüfen inwieweit die derzeit gültigen Normenwerke imstande sind, die in den Versuchen

ermittelte Querkrafttragfähigkeit passend abzubilden. Dadurch kann auf eventuell vorhandene Tragreserven geschlossen bzw. eine Aussage über die richtige Erfassung sämtlicher Einflussparameter getroffen werden.

4.5.1 Bauteile ohne Querkraftbewehrung

Die Modellvorstellungen, welche in den diversen internationalen Normen verankert sind, werden nachfolgend anhand von 284 Querkraftversuchen an Stahlbetonbalken ohne Querkraftbewehrung mit rechteckigem Querschnitt und punktförmiger Belastung überprüft. Als wesentliche Vergleichsgrundlage bieten sich die üblichen statistischen Parameter, Mittelwert \overline{x} , Standardabweichung s und Variationskoeffizient v, Minimum, Maximum an.

Die Auswertung der Versuchsdatenbank mit den verschiedenen Ansätzen (siehe Tabelle 4.8 und Abbildung 4.13) zeigt, dass die sogenannten "dehnungsbasierten" Querkraftmodelle (SIA262, CSA 23.03 und MC2010 LoAII) eine bessere Übereinstimmung mit den Versuchsergebnissen im Vergleich zum Eurocode 2 aufweisen. Der empirische Ansatz nach Eurocode 2 (siehe Abschnitt 4.2.1.1) verfügt über einen geringfügig höheren Variationskoeffizienten v=0,20, was sich dadurch erklären lässt, dass gemäß Eurocode 2 der Einfluss einer Momenten-Querkraft Interaktion vernachlässigt wird. Die größte Abweichung zwischen Versuchsergebnissen und berechneter Querkrafttragfähigkeit ergibt sich nach der amerikanischen Betonbaunorm ACI 318, was auf die Nichtberücksichtigung des Maßstabseinflusses zurückzuführen ist. Dieser Umstand führt dazu, dass die experimentell ermittelte Querkrafttragfähigkeit des Trägers mit der größten Bauteilhöhe h=2,0m von Yoshida und Bentz [72] deutlich überschätzt wird (V_{Exp}/V_{calc}=0,36). Im Umkehrschluss bedeutet dies, dass die Bemessung für große Bauteilhöhen gemäß ACI 318 stark auf der unsicheren Seite liegen kann.

Statistische Werte	EC2	SIA262	CSA23.03	ACI318	MC2010 LoA II
ANZAHL	284	284	284	284	284
MITTELWERT	1,13	1,10	1,14	0,97	1,12
STAND.ABW	0,18	0,15	0,14	0,24	0,14
COV	0,16	0,14	0,12	0,25	0,13
MIN	0,65	0,72	0,81	0,36	0,74
MAX	1,86	1,62	1,64	1,81	1,63
<=1	66	72	33	72	49

Tabelle 4.8: Statistische Auswertung zur Querkrafttragfähigkeit gemäß internationalen Normenwerken für 295 Versuche aus der Datenbank an Stahlbetonbalken ohne Querkraftbewehrung mit rechteckigem Querschnitt und punktförmiger Belastung

Es ist nicht sehr verwunderlich, dass die Normenwerke gerade für diese Art von Querschnitt und Belastung gute Ergebnisse liefern, sind sie doch genau mit solchen Versuchen kalibriert worden. Der etwas über 1,0 liegende Mittelwert ergibt sich dadurch, dass die für die statistische Auswertung zugrunde gelegte Datenbasis einige Versuche mit Schubschlankheiten a/d zwischen 2,5 und 3,0 beinhaltet und somit, wie in Abschnitt 5,1,1 erläutert, ein Teil der Querkraft bereits über eine direkte Lastabtragung zum Auflager geführt wird. Die hier untersuchten Ansätze liefern für solche Schubschlankheiten a/d ein auf der sicheren Seite liegendes Ergebnis. Wie schon erwähnt basieren die hier angestellten Untersuchungen auf der in Abschnitt 3.3 zusammengestellten Versuchsdatenbank. Da jedes der hier analysierten Modelle empirische Faktoren berücksichtigt, hängt die Genauigkeit der einzelnen Ansätze von der zugrunde gelegten Datenbasis ab. Der Großteil der Versuche wurde an kleinen Balken mit einer Schubschlankheit von a/d =3.0 und an Normalbeton durchgeführt, weshalb gerade in diesen Bereich die Modelle sehr gute Übereinstimmungen mit Versuchsergebnissen bringen. Wie bereits die Parameterstudie (siehe Abbildung 4.3) in Abschnitt 4.4.1.1 zeigte, kommt es daher in Bereichen, welche nicht mit dieser Vielzahl an Versuchen abgedeckt sind, zu größeren Abweichungen der einzelnen Modelle.

Abbildung 4.14 zeigt die experimentell ermittelte Schubtragfähigkeit im Vergleich der nach ÖNORM B4202:1958 errechneten Querkrafttragfähigkeit in Abhängigkeit der statischen Höhe d bzw. des Längsbewehrungsgrades ρ_l . Für diese Gegenüberstellung wurde die Datenbasis auf Versuche mit einer Zylinderdruckfestigkeit 14 < $f_{c,cyl}$ < 34,4 reduziert, da die zulässigen Schubspannungen $\tau_{0,zul}$ nur für die damals verwendeten Betongüten angegeben wurden. In der ÖNORM B4202:1958 wurde für die zulässige Schubspannung $\tau_{0,zul}$ ein globaler Sicherheitsfaktor von s=1,85 angeführt, welcher für den Vergleich jedoch eliminiert wurde.

Die bereits aufgezeigten Schwächen einer nur von der Betongüte abhängigen zulässigen Schubspannung $\tau_{0,zul}$ bei Bauteilen mit großer Bauteilhöhe h und geringen Längsbewehrungsgrades ρ_l kann durch die Auswertung in Abbildung 4.14 bekräftigt werden. Die Nichtberücksichtigung des Maßstabseinflusses ("size effect") und des Längsbewehrungsgrades ρ_l in Kombination mit der relativ hohen zulässigen Schubspannung $\tau_{0,zul}$ haben dazu geführt, dass der Nachweis gemäß aktuellem Normenstand für Bauteile ohne Querkraftbewehrung zum Teil nicht mehr erfüllt werden kann.

Abbildung 4.13: Auswertung der Datenbank an Stahlbetonbalken ohne Querkraftbewehrung mit rechteckigem Querschnitt und punktförmiger Belastung nach verschiedenen internationalen Normenwerken: (a) Eurocode 2 (b) SIA 262 (c) CSA A23.03 (d) ACI 318 (e) MC 2010 LòÁ II

FFG

Abbildung 4.14: Vergleich der experimentell ermittelten und berechneten Querkrafttragfähigkeit auf Basis der reduzierten Versuchsdatenbank (171 Versuche) in Abhängigkeit: (a) der statischen Höhen d (b) des Längsbewehrungsgrades ρ

Eine gleichförmige Belastung stellt in der Praxis die in der Regel öfter vorkommende Belastungsart dar. Die Anzahl der verfügbaren Versuchsdaten auf diesem Gebiet ist jedoch stark begrenzt, was auf die deutlich aufwändigere Versuchsdurchführung zurückzuführen ist. Neben der Versuchsdatenbank an Stahlbetonbalken ohne Schubbewehrung mit punktförmiger Belastung wurden auch die wenigen gut dokumentierten Versuche mit gleichförmiger Belastung einem Vergleich mit normativen Ansätzen unterzogen. Aufgrund der begrenzten Anzahl wurde lediglich ein Vergleich mit dem Eurocode 2 und der zurückgezogenen ÖNORM B 4252 aus dem Jahre 1958 angestellt. Während bei Versuchen mit Punktlast eine konstante Querkraft über das gesamte Schubfeld herrscht, tritt bei gleichmäßiger Belastung eine linear veränderliche Querkraft über die Länge auf. Dies erfordert bei einem Nachweisformat auf Querschnittsebene, welches auch beim Nachweis gegenüber Querkraft in sämtlichen Normen angewendet wird, eine genaue Definition des maßgebenden Bemessungsschnittes. Für Ansätze, welche eine Momenten-Querkraft Interaktion einbeziehen, ist dies auch bei ausschließlicher Punktbelastung notwendig. Gemäß ÖNORM B 4252:1958 durfte die zulässige Schubspannung $\tau_{0,zul}$ in keinem Querschnitt die einwirkende Schubspannungen unterschreiten, d.h. für eine gleichmäßige Belastung ist der Bemessungsschnitt direkt am Auflager zu führen. Gemäß Eurocode 2 darf der Nachweis im Abstand d von der Auflagerachse geführt werden.

Anhand der Auswertung, welche in Abbildung 4.15 (a) ersichtlich ist, lassen sich zwar aufgrund der geringen Anzahl von Versuche keine genauen Rückschlüsse ableiten, eine Tendenz ist jedoch ersichtlich. Mit der empirischen Gleichung des Eurocode 2 (Gleichung 4.1) in Kombination mit dem Bemessungsschnitt im Abstand d kann die wenigen Versuche nur

80

bm

Abbildung 4.15: Vergleich der experimentell ermittelten mit der berechneten Querkrafttragfähigkeit gemäß (a) Eurocode 2 (b) ÖNORM B 4252:1958

Vorgespannte Tragwerke ohne Schubbewehrung stellen im Brückenbau eher eine Rarität dar. Dennoch soll an dieser Stelle ein Vergleich der experimentellen Querkrafttragfähigkeiten aus der Versuchsdatenbank mit den nach Normen berechneten Tragfähigkeiten angestellt werden. Während nach Eurocode 2 der Einfluss der Vorspannung über die mit einem empirischen Vorfaktor versehene Normalspannung infolge Vorspannung σ_{cp} berücksichtigt wird, gehen die "dehnungsbasierten" Modelle (SIA 262, CSA A23.03, MC2010 LoA II) von der günstigen Wirkung der Vorspannung auf den Dehnungszustand aus. Dadurch reduzieren sich die Rissweiten was sich widerum positiv auf die Rissverzahnung für die in Abschnitt 3.3 erstellte Datenbank mit Querkrafttragfätige Bewertung würde es eine größere Datenbasis benötigen mit einer ausgewogeneren Verteilung der untersuchten Parameter. Dennoch lassen sich gewisse Tendenzen ablesen die nachfolgend kurz erläutert werden. Im Vergleich mit den "dehnungsbasierten" Ansätzen liefert das empirische Modell des Eurocode 2 schlechtere Übereinstimmungen mit Versuchsdaten (siehe Abbildung 4.16).

Tabelle 4.9: Statistische Auswertung zur Querkrafttragfähigkeit gemäß internationalenNormenwerken für 88 Versuche aus der Datenbank an Spannbetonbalken ohneQuerkraftbewehrung mit rechteckigem Querschnitt und punktförmiger Belastung

Statistische Werte	EC2	SIA262	CSA23.03	MC2010 LoA II
ANZAHL	88	88	88	88
MITTELWERT	1,33	1,26	1,33	1,28
STAND.ABW	0,34	0,31	0,23	0,18
COV	0,26	0,25	0,17	0,14
MIN	0,65	0,61	0,83	0,79
MAX	2,23	1,85	1,87	1,71

Abbildung 4.16: Auswertung der Datenbank an Spannbetonbalken ohne Querkraftbewehrung mit rechteckigem Querschnitt und punktförmiger Belastung gemäß: (a) Eurocode 2 (b) SIA 262 (c) CSA A23.03 (d) MC 2010

Die beste Übereinstimmung kann mit dem Modell nach MC2010, welche auf der SMCFT (siehe Abschnitt 2.3.3.2) basiert, erzielt werden. Alle Querkraftmodelle verfügen über einen

deutlich über 1,0 liegenden Mittelwert. Dies ist darauf zurückzuführen, dass vorgespannte Bauteile über eine zusätzliche Tragkapazität nach der Schubrissbildung verfügen. Bezüglich näherer Details wird auf Abschnitt 5.2 verwiesen. Die in den Normen angegebenen Bemessungsgleichungen beziehen sich daher primär auf die Schubrisslast und sehen dieses zusätzliche Tragvermögen als stille Reserve.

4.5.2 Bauteile mit Querkraftbewehrung

Das Querkraftverhalten von Trägern mit Schubbewehrung unterscheidet sich grundlegend von dem eines schubunbewehrten Bauteiles. Wenn die Bügelbewehrung ausreichend dimensioniert ist, so dass sie bei Schubrissbildung in der Lage ist, die freiwerdenden Zugkräfte aufzunehmen, ermöglicht dies eine zum Teil beträchtliche Laststeigerung. Deshalb wird in allen Normen eine Mindestquerkraftbewehrung a_{sw,min} gefordert, welche genau diese Aufgabe erfüllen soll und somit eine gewisse Robustheit gegen ein schlagartiges Querkraftversagen wie es bei schubunbewehrten Bauteil vorkommt, zu gewährleisten.

Im Zuge dieses Forschungsvorhabens wurde eine Versuchsdatenbank geschaffen (siehe Abschnitt 3.3), in der gezielt Versuche mit einem Querkraftbewehrungsgrad im Bereich der Mindestbewehrung $\rho_{w,min}$ aufgenommen wurden. Die primäre Versagensursache ergibt sich bei solchen Versuchen in der Regel durch ein Abreißen der Bügelbewehrung, Versuche mit Versagen der Druckstrebe wurden systematisch ausgeschlossen.

Statistische Werte	ÖN EN 1992-1-1	DIN EN 1992-1-1	MC2010 LoA II/SIA 262	MC2010 LoA III	CSA 23.03	ACI 318
ANZAHL	113	113	113	113	113	113
MITTELWERT	2,17	1,64	2,00	1,25	1,28	1,35
STAND.ABW	0,57	0,41	0,47	0,27	0,22	0,40
COV	0,26	0,25	0,24	0,22	0,17	0,30
MIN	1,05	0,73	1,15	0,69	0,76	0,58
MAX	3,77	2,53	3,32	1,85	1,81	2,35
<=1	0	9	0	25	13	26

Tabelle 4.10: Statistische Auswertung zur Querkrafttragfähigkeit gemäß internationalenNormenwerken für 110 Versuche aus der Datenbank an Stahlbetonbalken mitQuerkraftbewehrung mit rechteckigem Querschnitt und punktförmiger Belastung

Wie bereits in Abschnitt 2.4.2 ausführlich erläutert, können die Modellansätze für Bauteile mit Querkraftbewehrung in Modelle mit variabler Druckstrebenneigung θ (Eurocode 2, MC2010 LoA II und SIA 262) und in Modelle mit zusätzlichen Betontraganteil V_c eingeteilt werden (DIN EN 1992-1-1, MC 2010 LoA III, CSA 23.03 und ACI 318). Abbildung 4.18 (a)

- (f) zeigt den Vergleich zwischen normativer und rechnerischer Querkrafttragfähigkeit in Abhängigkeit des Querkraftbewehrungsgrades pw für 110 Versuche an einfeldrigen Stahlbetonbalken unter punktförmiger Belastung. Für die Berechnung der Querkrafttragfähigkeit gemäß nationalem Anwendungsdokument ÖNORM B 1992-1-1 wurde die Druckstrebenneigung θ in Abhängigkeit der vorhandenen Stahlspannung σ_s (siehe Abschnitt 4.2.2.1) ermittelt, was für die Nachrechnung von Versuchsergebnissen eine iterative Berechnung zur Folge hat. Die Stahlspannung σ_s wurde hierfür an der Stelle des maximalen Biegemomentes (Lasteinleitungsbereich) ermittelt. Die statistischen Auswertungen in Tabelle 4.10 sowie Abbildung 4.18 (a) zeigen, dass das Fachwerkmodell mit variabler Druckstrebenneigung θ des Eurocode 2 das Querkrafttragverhalten für Bauteile mit geringer Querkraftbewehrung nur sehr unzureichend wiederspiegeln kann. Bei einer Vielzahl von Versuchen wird die Tragfähigkeit erheblich unterschätzt, wodurch sein ein Mittelwert von \overline{x} =2,17 ergibt. Eine geringfügig bessere Übereinstimmung ergibt sich gemäß der zweiten Näherungsstufe nach Model Code 2010 bzw. dem genaueren Verfahren der Schweizer Norm SIA 262 (siehe Abbildung 4.18 (b)). Die Normenwerke, welche einen direkten anrechenbaren Betontraganteil Vc berücksichtigen (DIN EN 1992-1-1, MC 2010 LoA III, CSA 23.03 und ACI 318) geben die experimentell ermittelte Schubtragfähigkeit für Stahlbetonbalken mit geringer Querkraftbewehrung am präzisesten wieder. Hervorzuheben ist die auf der SMCFT [8] basierende Querkraftbemessung gemäß der kanadischen Betonbaunorm CSA A23.03, welche mit einem Variationskoeffizienten von v=0,17 die beste Vorhersage der Versuchsergebnisse ermöglicht.

Abbildung 4.17 zeigt die aufnehmbare Querkraft v_u in dimensionsloser Schreibweise in Abhängigkeit des mechanischen Querkraftbewehrungsgrades ω_w für das Fachwerkmodell gemäß Eurocode 2 mit drei verschiedenen Druckstrebenneigungen θ . Für jeden der nachgerechneten Versuche kann ω_w und v_u bestimmt werden und ein entsprechender Punkt in das in Abbildung 4.17 ersichtliche Diagramm eingetragen werden. Mit dieser Darstellung kann nun sehr anschaulich gezeigt werden, wie gut das zugrunde liegende Modell das Tragverhalten abbildet. Bei Versuchen, deren Punkte oberhalb der Grenzlinie liegen, überschätzt das Fachwerkmodell mit variabler Druckstrebenneigung θ die Tragfähigkeit. Das Modell würde in diesen Fällen auf der unsicheren Seite liegende Ergebnisse liefern. Liegen die Punkte unterhalb der Grenzlinie, wird die Tragfähigkeit hingegen unterschätzt. Im Vergleich mit der "Mörsch'schen" Linie sieht man eindeutig, dass das 45° Fachwerk nicht imstande ist, die maximale Traglast nur annähernd zu beschreiben. Mit der unteren Grenze der zulässigen Druckstrebenneigung θ_{min} gemäß Eurocode 2 lassen sich zwar deutlich bessere

Ergebnisse erzielen, der Großteil der Vorhersagen liegt jedoch noch immer sehr stark auf der sicheren Seite.

Abbildung 4.17: Vergleich der experimentell ermittelten mit der berechneten Querkrafttragfähigkeit Eurocode 2 für verschiedene Druckstrebenneigungen θ

Wie bereits in Abschnitt 3.3 dargelegt ist die Anzahl an gut dokumentierten Querkraftversuchen an Spannbetonbalken mit geringer Schubbewehrung äußerst begrenzt. Auf einen Vergleich mit sämtlichen internationalen Normenwerken wird aufgrund der dadurch entstehenden fehlenden Aussagekraft verzichtet. Dennoch wird an dieser Stelle ein Vergleich der mit 21 Versuchen sehr beschränkten Datenbasis mit dem im Österreich angewendeten Fachwerkmodell mit variabler Druckstrebenneigung 0 gemäß Eurocode 2 angestellt (siehe Abbildung 4.19). Der Winkel der Druckstrebe θ wird dabei mit 21,8° so flach wie möglich angenommen, um die maximale Querkrafttragfähigkeit der Bügelbewehrung zu erlangen. Obwohl der Datensatz äußerst limitiert ist, lässt sich dennoch eine eindeutige Tendenz ablesen, die rechnerische Querkrafttragfähigkeit gemäß Eurocode 2 kann die in den Versuchen aufgetretene Schubbelastung nicht abbilden. Die Auffassung, dass die Bügelbewehrung alleine die gesamte Querkraft abträgt, scheint ein zu konservativer Ansatz für vorgespannte Bauteile mit geringer Schubbewehrung zu sein. Die Punktwolke zeigt auch den Trend, dass die Unterschätzung der Tragfähigkeit mit zunehmenden Querkraftbewehrungsgehalt p_w abnimmt. Um jedoch eine qualitative Aussage zu treffen, bedarf es noch einer Vielzahl von experimentellen Untersuchungen auf diesem Gebiet.

Abbildung 4.18: Auswertung der Datenbank an Stahlbetonbalken mit Querkraftbewehrung und punktförmiger Belastung nach verschiedenen internationalen Normenwerken: (a) ÖNORM EN 1992-1-1 θ=30,96° (b) DIN EN 1992-1-1 (c) MC2010 LoA II/SIA 262 (d) MC2010 LoA III (e) CSA A23.03 (f) ACI 318

bm

Abbildung 4.19: Auswertung der Datenbank an Spannbetonbalken mit Querkraftbewehrung und punktförmiger Belastung gemäß Eurocode 2

4.6 Zusammenfassung

Mit dem in diesem Kapitel angestellten Normenvergleich verschiedenster internationaler Betonbaunormen konnte aufgezeigt werden, dass im Bereich der Bestimmung der Querkrafttragfähigkeit sowohl für Bauteile ohne Querkraftbewehrung als auch für mit Schubbewehrung gravierende Unterschiede anzutreffen sind. Während sich die Vorstellung, dass die Querkräfte bei Trägern mit Schubbewehrung über ein idealisiertes Fachwerk abgetragen werden, guasi weltweit durchgesetzt hat, herrscht bei den Ansätzen für die Querkrafttragfähigkeit bei schubunbewehrten Bauteilen (Platten als Haupttragwerk und Fahrbahnplatten in Querrichtung) noch große Uneinigkeit. Jedes der im Zuge der ausführlichen Parameterstudie untersuchten Normenwerke verfolgt eine andere Modellvorstellung mit unterschiedlichen analytischen Formelwerken. Auch die Anzahl der mit einbezogenen Einflussparameter variiert stark. Daher ist es nicht sehr verwunderlich, dass es in gewissen Bereichen auch zu deutlichen unterschiedlichen Querkraftwiderständen kommen kann. Bei Bauteilen mit Schubbewehrung unterscheiden sich die Modelle im Wesentlichen durch die Annahme der Druckstrebenneigung θ und der Anrechnung eines zusätzlichen Betontraganteils V_c. Dies kann für Träger mit geringem Querkraftbewehrungsgrad zum Teil erhebliche Unterschiede für die Berechnung der Querkrafttragfähigkeit ausmachen.

Ein Hauptaugenmerk wurde auch auf bereits zurückgezogene und somit nicht mehr gültige österreichische Normen der Serie ÖNORM B 42xx ab dem Jahre 1950 gelegt. Durch einen direkten Vergleich der zulässigen Schubspannungen, bei welchen auf eine Schubbewehrung bei Platten zur Gänze verzichtet werden durfte, konnte gezeigt werden, dass die ÖNORM B 4200-4:1957 und die dazugehörige Straßenbrückennorm ÖNORM B 4252:1958

wesentlich höhere Schubspannungen erlaubten, als dies in sämtlichen darauf folgenden österreichischen Normenwerken der Fall war. Dies bedeutet für die Nachrechnung von Plattentragwerken, welche nach diesen beiden Normen bemessen wurden, dass bei Anwendung des aktuellen Normenstandes die Gefahr besteht, dass nun rechnerisch eine Schubbewehrung erforderlich wäre. Der Vergleich mit der in Kapitel 3 erstellten Versuchsdatenbank mit schubunbewehrten Trägern unter Einzellast rechtfertigt diese Reduktion der zulässigen Schubspannung. Die Einsicht, dass die Querkrafttragfähigkeit bei Bauteilen ohne Schubbewehrung einem signifikanten Maßstabseinfluss unterliegt, sowie die Abhängigkeit der Schubtragfähigkeit vom Längsbewehrungsgrad $\rho_{\rm I}$ haben zu einem Umdenken in der Bemessung von Platten ohne vertikaler Bewehrung geführt.

Für Träger wurde bei Überschreitung dieser zulässigen Schubspannung stets eine Mindestquerkraftbewehrung asw.min gefordert, deren Höhe normativ festgelegt war und sich über die Jahre hinweg bis heute kaum änderte. Bei Überschreitung der zulässigen Schubspannung im Gebrauchszustand musste die gesamte unter 45° geneigte Zugkraft (Anm.: Neigung der Hauptzugspannung auf Höhe der Nulllinie bei reiner Schubbeanspruchung) durch Bewehrung aufgenommen werden. Es kam somit ein Mörsch'sches Fachwerk zur Anwendung. Ab dem Jahre 1971 musste nicht mehr die gesamte Zugkraft durch Bewehrung abgedeckt werden, sondern es durfte ein sogenannter Abzugswert berücksichtigt werden, welcher als Betontraganteil verstanden werden kann. Im Straßenbrückenbau durfte diese zusätzliche Tragkapazität des Betons jedoch nicht angesetzt werden. Die Ermittlung der Querkraftbewehrung erfolgte somit bis zur Einführung der ÖNORM B 47xx für Straßenbrücken mit einem 45° Fachwerk. Mit der Einführung des Fachwerkmodells mit variabler Druckstrebenneigung θ (ÖNORM B 4700) wurde das Mörsch'sche Fachwerk abgelöst und der Winkel der Druckstreben durfte nun deutlich flacher als bisher angenommen werden. Für die Nachrechnung bedeutet dies im Umkehrschluss, dass nach Mörsch'schem Fachwerk bemessene Tragwerke bei einer Bewertung nach aktuellem Normenstand eigentlich keine rechnerischen Defizite beim Nachweis der Querkrafttragfähigkeit ergeben dürften.

Darüber hinaus wurden die verschiedenen Querkraftbemessungsmodelle anhand der in Abschnitt 3.3 erstellten Datenbasis überprüft. Der Vergleich mit den Versuchsergebnissen an Stahlbetonträgern ohne Schubbewehrung zeigt, dass die derzeit in verschiedenen Ländern gültigen Normenwerke durchaus in der Lage sind, die experimentellen Traglasten unter Querkraftbeanspruchung adäquat vorherzusagen und dass obwohl sämtliche Normen auf verschiedenen Ansätzen bzw. Modellvorstellungen beruhen. Die Erklärung hierfür ist schnell gefunden, verfügen doch alle Modelle über empirisch ermittelte Faktoren, welche

bm

anhand ähnlicher Versuchsdaten mittels Regressionsanalyse kalibriert wurden. Eine Gegenüberstellung der errechneten Querkrafttragfähigkeit mit Versuchsdaten von Stahlbetonträgern unter Gleichlast konnte jedoch zeigen, dass der Eurocode 2 zum Teil auf der sicheren Seite liegt und somit Potenzial für zusätzliche Tragreserven anzutreffen ist.

Der Vergleich zwischen experimenteller Traglast von Stahl- und Spannbetonbalken unter punktförmiger Belastung mit geringer Querkraftbewehrung und der rechnerischen Querkrafttragfähigkeit gemäß Eurocode 2 zeigt eindeutig, dass das verwendete Fachwerkmodell mit variabler Druckstrebenneigung θ nicht in der Lage ist, das Querkrafttragverhalten passend zu beschreiben. Die Annahme, dass die Querkraft rein über die Bügelbewehrung abgetragen wird, liefert markant auf der sicheren Seite liegende Ergebnisse.

Für den Neubau hat die konservative Herangehensweise des Eurocode 2 durchaus seine Berechtigung um unseren Tragwerken eine gewisse Robustheit zu gewähren. Für die Bewertung bestehender Tragwerke, welche sich augenscheinlich in einem guten Zustand befinden und aufgrund veränderter normativer Regelungen nicht mehr den aktuellem Normenstand genügen, wäre die Berücksichtigung zusätzlicher Tragkapazitäten für die Nachrechnung durchaus nützlich. Dies gilt im Speziellen für Spannbetonbrücken, welche gemäß DIN 4227:1953 bemessen wurden, da dort bis zur Herausgabe der "Ergänzenden Bestimmungen zur DIN 4227" im Jahre 1966 keine normativ verbindliche Mindestquerkraftbewehrung a_{sw,min} angegeben wurde. Die dem bemessenden Ingenieuren überlassene freie Wahl der Bewehrungsmenge hat in einigen Fällen dazu geführt, dass die vorhandene Schubbewehrung a_{sw,vorh} nicht einmal der Mindestquerkraftbewehrung a_{sw,min} nach Eurocode 2 entspricht . Genau für diese Fälle wäre eine realitätsnähere Berechnung der Querkrafttragfähigkeit mit Berücksichtigung zusätzlicher Tragmechanismen behilflich, um unnötige Sanierungen eventuell zu verhindern.

Zusammenfassend lässt sich die rechnerische Querkraftgefährdung, welche sich aufgrund der Veränderung in der Querkraftbemessung und Erhöhung der Verkehrslasten ergibt, auf folgende Situationen reduzieren:

- Spannbetonbrücken mit geringer Querkraftbewehrung geplant nach DIN 4227:1953, welche vor allem im Zeitraum zwischen 1953 und 1966 bemessen wurden (siehe Abbildung 4.20 (a) und (b))
- Platten als Haupttragwerke bzw. Fahrbahnplatten in Querrichtung ohne Schubbewehrung bemessen nach ÖNORM B 4252:1958 (siehe Abbildung 4.20 (c) und (d))

bm

Abbildung 4.20: Potentiell querkraftgefährdete Brückentypen: (a) vorgespannte Hohlkastenbrücke mit sehr schwacher Querkraftbewehrung (b) vorgespannte Plattenbalkenbrücke mit sehr schwacher Querkraftbewehrung (c) Plattenbrücke ohne Querkraftbewehrung (d) Fahrbahnplatten in Querrichtung ohne Querkraftbewehrung

5 UNTERSUCHUNG VERSCHIEDENER EINFLUSSPARAMETER

Im Zuge dieses Kapitels soll auf Basis der in Kapitel 3 zusammengestellten Versuchsdatenbanken gewisse Einflussparameter auf die Querkrafttragfähigkeit näher untersucht werden. Die Auswahl der analysierten Einflüsse wurde dabei gezielt so gewählt, dass auf die in Abschnitt 4.6 erwähnten querkraftgefährdeten Brückentypen ein wesentliches Augenmerk gelegt wurde. Dies betrifft zum einen die Art der Belastung sowie die Laststellung und zum anderen den Einfluss der Vorspannkraft auf die Schubtragfähigkeit.

5.1 Untersuchung des Einflusses der Belastung auf die Querkrafttragfähigkeit

5.1.1 Einfluss der Laststellung und Lastart

Spätestens seit den umfangreichen experimentellen Arbeiten von Kani [21] und Leonhardt [20] ist bekannt, dass die Laststellung sowie die Lastart einen wesentlichen Einflussparameter bei der Formulierung der Querkrafttragfähigkeit bei Bauteilen mit und ohne Schubbewehrung darstellen.

bm

Abbildung 5.1: Experimentelle Untersuchung des Einflusses der Laststellung von Leonhardt und Walther [20]: (a) Ausnützungsgrad der Biegetragfähigkeit in Abhängigkeit der Schubschlankheit a/d: "Schubtal nach Kani" (b) Rissbildung nach dem Querkraftversagen und theoretische Druckstrebe für a/d = 1,5 und 4,0

Abbildung 5.1 (a) zeigt das Verhältnis von im Versuch erreichten Biegemoment M_{exp} im Verhältnis zur rechnerischen Biegetragfähigkeit M_u in Abhängigkeit der Schubschlankheit a/d einer von Leonhardt und Walther [20] durchgeführten Versuchsserie. Durch Variation des Abstandes a der Einzellast vom Auflager unter Beibehaltung sämtlicher geometrischer Abmessungen und Materialkennwerte konnte gezeigt werden, dass ab einem gewissen Verhältnis von a/d nicht die volle Biegetragfähigkeit erreicht werden konnte, da die Versuchsträger vorher auf Querkraft versagten. Der in Abbildung 5.1 (a) dargestellte Verlauf ähnelt sehr dem eines Tales, was Kani [24] zur Bezeichnung Schubtal inspirierte.

Für sehr kleine Schubschlankheiten a/d (siehe Abbildung 5.1 (a) "linke Talseite" bzw. (b) oben) kann sich auch nach Einsetzen der Schrägrissbildung eine direkte Druckstrebe ausbilden, welche die gesamte Querkraft auf direkten Wege ins Auflager ableitet. Es kann somit die Biegetragfähigkeit voll ausschöpft werden. Dieser als Sprengwerk (Einzellast) bzw. als Bogen (Gleichlast) bekannte Tragmechanismus kann sich bei zunehmender Schubschlankheit nicht mehr voll ausbilden, da die theoretische Druckstrebe durch Biegeschubrisse durchdrungen wird (siehe Abbildung 5.1 (a) "rechte Talseite" bzw. (b) unten). Bei zunehmender Rissbildung versucht das Bauteil durch eine Systemumlagerung vom Biegebalken hin zu einem Sprengwerk/Bogen weiterhin ein Gleichgewicht zu finden, was jedoch aufgrund der reduzierten Druckzonenhöhe nicht mehr möglich ist. Ab einem gewissen a/d Verhältnis verliert die Querkrafttragfähigkeit jedoch wieder an Bedeutung, da bevor sich der "kritische" Biegeschubriss überhaupt bilden kann, bereits die Biegetragfähigkeit des Systems erreicht wird. Eine klare Abgrenzung der einzelnen Bereiche ist schwer möglich, da dies von den geometrischen Abmessungen sowie von dem Bewehrungsgehalt p_l abhängig

ist. In der Regel kann jedoch davon ausgegangen werden, dass ab einer Schubschlankheit a/d von 2,0 bis 2,5 keine Umlagerung hin zu einem Sprengwerk stattfinden kann.

Die Bemessung von Stahlbeton- und Spannbetonbauteilen beruht im Allgemeinen auf der Annahme, dass die Dehnung einem über die Höhe linearen Verlauf folgt. Diese Annahme, dass Querschnitte auch im verformten Zustand eben bleiben (Bernoulli-Hypothese), stellt eine sehr einfache jedoch auch mächtige Theorie dar, auf deren Basis sämtliche Nachweise im Grenzzustand der Tragfähigkeit (Querkraft- und Biegebemessung) beruhen. Wie von Schlaich in [25] sehr anschaulich dargestellt, ist die Annahme jedoch nur auf die sogenannten B-Bereiche (B=Bernoulli) anwendbar (siehe Abbildung 5.2). Der innere Spannungszustand lässt sich hier aus den äußeren Schnittgrößen auf Querschnittsebene beschreiben. In Bereichen großer Lasteinleitung (große Einzelkräfte, Auflagerbereiche usw.) bzw. bei sprunghaften Querschnittsänderungen stellt sich hingegen eine nichtlineare Verteilung der Dehnungen ein, welche stark von den Schubdehnungen beeinflusst wird. Das Tragverhalten in den sogenannten D-Bereichen (D=Diskontinuität) lässt sich hier mit den zuvor angeführten Annahmen nicht mehr zuverlässig beschreiben. Gemäß dem St. Venant'schen Prinzip ergibt sich, dass bei Balken in einem Abstand in der Größenordnung der Querschnittshöhe h, die Bernoulli-Hypothese wieder eine gute Näherung darstellt und dies somit als Grenze zwischen B- und D-Bereichen angesehen werden kann.

In den D-Bereichen verlieren die in den Normen üblichen Bemessungsverfahren auf Querschnittsebene ihre Gültigkeit, weshalb sich in diesen Fällen die Anwendung von Stabwerkmodellen [25] bzw. von Spannungsfeldern [26] durchgesetzt hat.

Der Grundgedanke der Modellierung mit Stabwerken basiert auf der Idealisierung des inneren Kraftflusses (siehe Abbildung 5.2) mit Fachwerkelementen. Die Druckspannungen werden dabei als Betonstreben abgebildet, auftretende Zugspannungen werden von Bewehrungselementen aufgenommen. Neben der Bemessung der Spannungsfelder, welche

zu Stäben zusammengefasst werden, muss auch ein besonderes Augenmerk auf die Ausbildung der Knoten gelegt werden. Hier spielen im Besonderen die vorherrschenden Spannungszustände bzw. die konstruktive Durchbildung (z.B. Verankerungslängen) der Knoten eine wesentliche Rolle. Als wohl das bekannteste Stabwerkmodell kann das 45° Fachwerkmodell von Ritter [28] bzw. Mörsch [29] bezeichnet werden, welches seit gut einem Jahrhundert die Grundlage für die Bemessung von Balken bildet (siehe Abbildung 5.3 bzw. Abschnitt 2.4.2).

Abbildung 5.3: Stabwerk- bzw. Fachwerkmodell eines Einfeldbalkens mit konzentrierter Lasteinleitung

Das aus den Kraftfluss hervorgehende Stabwerkmodell ist gemäß dem unteren Grenzwertsatz der Plastizitätstheorie zu bemessen, d.h. zur gegebenen Belastung muss eine Spannungsverteilung gefunden werden, welche zum einen die Gleichgewichtsbedingungen erfüllt und zum anderen die Fließgrenze des jeweiligen Werkstoffes nicht überschreitet. Um dies zu gewährleisten, muss das Tragwerk über genügend Verformungsvermögen bzw. Rotationskapazität verfügen.

Die Querkrafttragfähigkeit von gedrungenen (I/d<8-10) bzw. mit auflagernahen Lasten beanspruchten Bauteilen (a/d<2-2,5) stellen somit D-Bereiche dar, in welchen die Annahme vom Ebenbleiben der Querschnitte nicht mehr gültig ist. Auflagernahe Punktlasten kommen im Brückenbau bei den wandernden Radlasten der verschiedenen Verkehrslastmodelle (z.B: LM1 oder 2) vor und stellen somit eine häufig auftretende Laststellung dar. Gemäß ÖNORM EN 1992-1-1 6.2.2 (7) können Träger mit auflagernahen Lasten daher alternativ auch mit Stabwerkmodellen bemessen werden. Die Anwendung von Stabwerkmodellen bei Bauteilen ohne Schubbewehrung ist jedoch wesentlich aufwendiger im Berechnungsablauf als die normalerweise üblichen Nachweise auf Querschnittsebene. Des Weiteren konnten Lehwalter und Walraven [73] mit ihren Versuchen an gedrungenen Trägern demonstrieren, dass diese ähnlich wie schubschlanke Bauteile einen sehr markanten Maßstabseinfluss aufweisen, welcher mithilfe von Stabwerkmodellen jedoch nicht wiedergegeben werden kann. Deshalb ist es gemäß Eurocode 2 [108,109,110,111] auch für auflagernahe Lasten

bm

$$\beta = \frac{a}{2 \cdot d} \tag{5.1}$$

Die Anwendung auf die in [61] erstellte Versuchsbasis zeigt (siehe Abbildung 5.4 (b)), dass sich dadurch eine wesentliche Verbesserung in der Vorhersage der Versuchsergebnisse ergibt. Ein Vergleich der um den Reduktionsfaktor β abgeminderten Querkraft mit dem berechneten Schubwiderstand legt dar, dass kein einziger der 122 analysierten Versuche unterhalb von 1,0 liegt.

Abbildung 5.4: Vergleich der empirischen Gleichung 4.1 für Bauteile ohne Querkraftbewehrung gemäß Eurocode 2 mit Versuchsergebnissen der Datenbank aus [61] unter Punktbelastung: (a) ohne Reduktionsfaktor β für a/d<2,0 (b) mit Reduktionsfaktor β für a/d<2,0

Der in Gleichung 5.1 angeführte Reduktionsfaktor β darf gemäß Eurocode 2 [108,109,110,111] auch bei gedrungenen Bauteilen mit Querkraftbewehrung angewendet

werden. Dehnungsmessungen an der Bügelbewehrung bei Versuchen an gedrungenen Balken haben jedoch ergeben, dass bei auflagernaher Belastung die vertikale Bewehrung die Fließgrenze f_{yw} nicht erreicht, weshalb die anrechenbare Schubbewehrung A_{sw} auf einen Bereich von 0,75·a begrenzt wurde. Die in [61] zusammengefasste Datenbasis beinhaltet auch eine Vielzahl von Versuchen mit vertikaler Bewehrung. Ein Vergleich der Versuchsergebnisse mit den im Eurocode 2 angegebenen Bemessungsregeln ist in Abbildung 5.5 ersichtlich. Auch bei Bauteilen mit Schubbewehrung steigt das Verhältnis zwischen Versuchslast und berechneter Tragfähigkeit mit abnehmender Schubschlankheit a/d, wenn der Reduktionsfaktor β unberücksichtigt bleibt (siehe Abbildung 5.5 (a)). Darüber hinaus streuen die Ergebnisse wesentlich mehr als dies bei Bauteilen ohne Schubbewehrung der Fall ist. Bei Verwendung des Reduktionsfaktors β aus Gleichung 5.1 vermindert sich zwar die Streuung deutlich, befriedigende Ergebnisse lassen sich jedoch trotzdem nicht erzielen. Des Weiteren liegen einige Ergebnisse unterhalb von 1,0 und somit auf der unsicheren Seite.

Abbildung 5.5: Vergleich der empirischen Gleichung 4.1 für Bauteile mit Querkraftbewehrung gemäß Eurocode 2 mit Versuchsergebnissen der Datenbank aus [61]: (a) ohne Reduktionsfaktor β (b) mit Reduktionsfaktor β

Mit der Auswertung der in [61] erstellten Versuchsdatenbank konnte gezeigt werden, dass die Querkrafttragfähigkeit bei gedrungenen Trägern (a/d<2,0-2,5) deutlich über jener schubschlanker Bauteile anzusiedeln ist, was auf die Umlagerung auf ein Sprengwerk (direkte Druckstrebe) zurückzuführen ist. Aufbauend auf den zuvor getätigten Untersuchungen werden folgende Vorschläge für die Bemessung von gedrungenen Bauteilen mit und ohne Schubbewehrung getätigt:

Bei Bauteilen ohne Schubbewehrung ist die querschnittsbezogene Querkraftbemessung mit einem höheren Reduktionsfaktor β gemäß Gleichung 5.2 bzw. Abbildung 5.6 einer Modellierung mit Stabwerkmodellen vorzuziehen. Gerade im Falle wandernder Radlasten ist die Idealisierung mit Stabwerkmodellen für die praktische Anwendung eher aufwändig. Der in Gleichung 5.2 erhöhte Reduktionsfaktor β war bereits in dieser Höhe im Model Code 1990 [100] und in der ÖNORM B4700:1995 [124] verankert und konnte anhand der Auswertung in Abbildung 5.5 (b) abgesichert werden. Für die Nachrechnung von bestehenden Brücken wird dringlich angeraten, von diesem Reduktionsfaktor β konsequent Gebrauch zu nehmen, auch wenn diese Vorgehensweise vielleicht im streng mechanischen Sinne nicht vollkommen sauber ist.

bm

Abbildung 5.6: Reduktionsfaktor β: (a) Vergleich verschiedener Abminderungsfaktoren für Bauteile ohne Querkraftbewehrung: EC2, MC2010, ACI 318 und Vorschlag aus Gleichung 5.2 (b) Vergleich der empirischen Gleichung 4.1 für Bauteile ohne Querkraftbewehrung mit Versuchsergebnissen der Datenbank aus [61] mit vorgeschlagenen Reduktionsfaktors β für a/d<2,5

 Bei Bauteilen mit Querkraftbewehrung sollte auf eine Erhöhung des Reduktionsfaktors β gemäß Gleichung 5.2 verzichtet werden, da mit zunehmendem Querkraftbewehrungsgrad p_w und zunehmender Schubschlankheit a/d das Verhältnis zwischen experimenteller und rechnerischer Querkrafttragfähigkeit auf die unsichere Seite wandern. Im Gegensatz zu Bauteilen ohne Schubbewehrung bietet sich bei einer vorhandenen Schubbewehrung die Modellierung mit Stabwerken besser an, da die Zugkräfte von der Bewehrung übernommen werden können und die Ergebnisse der Stabwerkmodellierung nicht so stark an die Zugfestigkeit des Betons gebunden sind. Der Aufwand für eine Nachrechnung ist jedoch deutlich höher als bei einer Nachweisführung auf Querschnittsebene.

Im Brückenbau muss der gleichförmigen Belastung mindestens die gleiche Bedeutung geschenkt werden wie jener der Punktuellen. Wenn man bedenkt, dass ein großer Anteil der im Netz befindlichen Eisenbahnbrücken Brücken kurzer Spannweite sind (z.B. Durchlässe usw.), welche vorwiegend eine gleichförmige Belastung aufweisen bzw. dass im Bereich größerer Spannweiten das Eigengewicht gegenüber den Verkehrslasten klar dominiert, ist es durchaus verwunderlich, dass sämtliche Versuche mittels punktueller Belastung durchgeführt wurden. Die Erklärung hierfür, ist wie bereits öfter erwähnt, schnell gefunden und beruht auf der Tatsache, dass die Versuchsdurchführung mit einer bzw. zwei Einzellasten wesentlich einfacher ist. Abbildung 5.7 (a) liegt eine der wenigen gut dokumentierten Versuchsreihen, welche sich dem Einfluss der Schlankheit I/d bei gleichförmiger Belastung widmeten (Leonhardt und Walther [20]), zugrunde. Ähnlich wie bei punktförmiger Belastung lässt sich bei gleichförmiger Belastung ein sogenanntes "Schubtal" erkennen, welches im Bereich von ca. I/d≈10 sein Minimum hat.

Im Bereich geringer Schlankheit I/d kann ein erheblicher Teil der Gleichlast über einen Bogen abgetragen werden (siehe linke Talseite in Abbildung 5.7 (a) bzw. (b) oben), während mit zunehmenden I/d Verhältnis dieser Bogen von Biegeschubrissen unterbrochen wird und daher sich diese Bogentragwirkung nicht mehr einstellen kann (siehe rechte Talseite in Abbildung 5.7 (a) bzw. (b) unten). In diesen Fällen führt der kritische Biegeschubriss zu einem sofortigen Versagen der Struktur. Bei höheren Schlankheiten wird wiederum die Biegetragfähigkeit maßgebend. Ein Vergleich zwischen punktförmiger und gleichförmiger Belastung (Abbildung 5.1 (a) und Abbildung 5.7 (a)) zeigt ein deutlich ausgeprägteres Schubtal bei Bauteilen mit Punktbelastung, was auf eine höhere Querkraftgefährdung bei punktförmiger Belastung hindeutet.

FFG

Abbildung 5.7: Experimentelle Untersuchung der Schlankheit I/d von Leonhardt und Walther [20]: (a) Ausnützungsgrad der Biegetragfähigkeit in Abhängigkeit der Schlankheit I/d: (b) Rissbildung nach dem Querkraftversagen und direkter Lastabtrag

Gemäß Eurocode 2 [108,109,110,111] darf der Bemessungsschnitt im Abstand d von der Auflagerkante gelegt werden, womit unterstellt wird, dass die zwischen Auflager und Abstand d einwirkende Gleichlast direkt ins Auflager geleitet wird. Abbildung 5.8 (a) zeigt den Vergleich der wenigen Versuchsergebnisse mit der nach Eurocode 2 ermittelten Querkrafttragfähigkeit in Abhängigkeit der Schlankheit I/d. Wie man unschwer erkennen kann, liefert die Annahme des Bemessungsschnittes im Abstand d vom Auflager für Bauteile ohne Querkraftbewehrung konservative Ergebnisse. Es wird daher eine Verlegung des Bemessungsschnittes auf den Abstand 2d vom Auflager vorgeschlagen. Dies führt wie in Abbildung 5.8 (b) zu deutlich besseren Übereinstimmungen mit der in Abschnitt 3.3 erstellten Versuchsdatenbank. Inwieweit diese Aussage auch für Bauteile mit Schubbewehrung zutrifft, kann aufgrund der fehlenden experimentellen Untersuchungen in diesem Gebiet keine abgesicherte Aussage getroffen werden.

Abbildung 5.8: Vergleich der empirischen Gleichung 4.1 für Bauteile ohne Querkraftbewehrung gemäß Eurocode 2 mit Versuchsergebnissen der Datenbank aus Abschnitt 3.3 unter gleichförmiger Belastung: (a) mit Bemessungsschnitt im Abstand d vom Auflager (b) im Abstand 2d vom Auflager

5.1.2 Einfluss der Bauteilbreite bei gleichmäßiger Belastung in Querrichtung

Die Querkraftbemessung von Bauteilen ohne Schubbewehrung beruht in sämtlichen Normenwerken auf der empirischen Kalibrierung gewisser Einflussfaktoren mit Hilfe von Datenbanken von Balkenversuchen. Im Zuge dessen, drängt sich die Frage auf, inwieweit diese Versuchsergebnisse an Balken auf einachsig gespannte plattenförmige Bauteile umgemünzt werden können.

Abbildung 5.9: Untersuchung der Einfluss der Bauteilbreite bei gleichmäßiger Belastung in Querrichtung (a) Experimentelle Schubspannung τ_{Exp} in Abhängigkeit der Bauteilbreite b (b) Abmessungen der Versuchsbalken und Details zur Lasteinleitung

Der Einfluss der Bauteilbreite auf die Querkrafttragfähigkeit wurde bereits von Kani [21] in den 60ern untersucht. Er verglich die auf die statisch wirksame Fläche bezogene experi-

mentelle Schubspannung τ_{Exp} eines 150mm und 600mm breiten Balken bzw. Platte miteinander und konnte daraus den Schluss ziehen, dass der Einfluss der Bauteilbreite vernachlässigbar klein ist (siehe Abbildung 5.9). Sherwood et al. [74] konnte diese Aussage mit seiner Versuchsreihe an 250mm, 1000mm und 3000mm breiten Versuchskörpern mit unterschiedlicher Lasteinleitung verifizieren und bestätigen (siehe ebenso Abbildung 5.9). Die anhand von Balkenversuchen gewonnenen experimentellen Erkenntnisse können auf einachsig gespannte Platten mit gleichmäßiger Belastung in Querrichtung übertragen werden.

5.1.3 Lastverteilung bei punktförmiger Belastung

5.1.3.1 Allgemeines

Im Gegensatz zur einachsig gespannten Platte mit über die Breite gleichmäßig verteilter Belastung spielt die Lastausbreitung bei konzentrierten Einzellasten eine wesentliche Rolle (siehe Abbildung 5.10 (a)). Im nachfolgenden Abschnitt wird gezielt auf diese Problematik eingegangen, aufgrund der begrenzten experimentellen Untersuchungen auf diesem Gebiet, kann jedoch nur eine Analyse der Lastverteilung bei Kragarmen getätigt werden. Bei den bisherigen Betrachtungen fiel die Richtung der Hauptquerkräfte und der Hauptmomente stets mit der Verlegerichtung der Bewehrung zusammen. Bei Fahrbahnplatten unter konzentrierter Belastung (z.B.: Radlasten des Lastmodells 1 und 2) trifft dies nur in bestimmten Bereichen zu. Die an Balkenversuchen gewonnenen Versuchsergebnisse können somit nur in begrenzten Umfang auf Platten mit konzentrierter Lasteinleitung übertragen werden. Darüber hinaus verfügen Platten über eine Umlagerungskapazität, wodurch sich zum Teil höhere Querkrafttragfähigkeiten als bei einachsig gespannten Tragwerken ergeben.

5.1.3.2 Effektive Plattenbreite für Querkraft beff,v

Im Zuge der Bewertung von bestehenden Fahrbahnplatten bzw. auch bei der Bemessung ergibt sich somit die Fragestellung nach der Höhe der zu bemessenden Querkraft v_{Ed} . In der täglichen Ingenieurpraxis stehen für die Bewältigung dieser Bemessungsaufgabe verschiedene Möglichkeiten zur Verfügung, um die mitwirkende Plattenbreite $b_{eff,v}$ für die Querkraftbeanspruchung v_{Ed} (siehe Abbildung 5.10 (b)) zu ermitteln:

- 45° Ausbreitung von der Mitte der Radaufstandsfläche (siehe Abbildung 5.11 (b)) bzw. hinteren Außenkante der Radaufstandsfläche (siehe Abbildung 5.11 (b))
- DAfStb-Heft 240 [75] (siehe Abbildung 5.11 (b))

- Model Code 2010 [101] (siehe Abbildung 5.11 (c))
- Rombach [76]
- Hegger, Reissen [67]

(a)

Linear elastische FE-Analyse (siehe Abbildung 5.11 (d))

Abbildung 5.10: Lastausbreitung bei Fahrbahnplatten: (a) Verlauf der Hauptquerkräfte vo (b) mitwirkende Plattenbreite und resultierende Querkraft

Nachfolgend wird auf die einzelnen Verfahren näher eingegangen. Während für die Berechnung von Biegemomenten bei Stahlbetonfahrbahnplatten mehrere sogenannte "Plattentafeln" zur Verfügung stehen (z.B.: Pucher, Homberg, Czerny usw.) existieren solche Hilfsmittel für die Ermittlung von Querkräften kaum.

Ein in Deutschland sehr gebräuchlicher Ansatz wurde von Grasser und Thielen [75] im Heft 240 vom DAfStB veröffentlicht. Darin wird für verschiedene statische Systeme und Belastungsarten mitwirkende Breiten sowohl für Biegemomenten- als auch Querkraftbeanspruchungen angegeben. Die effektive Plattenbreite beff,v für einen Kragarm unter Schubbeanspruchung ergibt sich darin zu

$$b_{eff,H240} = t_y + 0.3 \cdot x \tag{5.3}$$

für

bm

$$0, 2 \cdot l_k < x < l_k 0, 2 \cdot l_k < t_y < 0, 4 \cdot l_k t_y \le 0, 2 \cdot l_k$$

mit x Abstand der Radlast vom Auflager

I_k Kragarmlänge

t_x, t_y Ausbreitung der Last unter 45° auf die Plattenmitte

Rombach [76] stellte auf Basis einer Parameterstudie mit Hilfe einer linear elastischen Finite-Elemente Berechnung folgende Näherungslösung für die effektive Plattenbreite unter Querkraftbeanspruchung auf

$$b_{eff,v} = 0,6 + 0,95 \cdot h_a + 1,15 \cdot a \tag{5.4}$$

mit h_a Bauteilhöhe unter Lastzentrum

a Abstand der Radlast vom Auflager

Hegger und Reißen [67] erweiterten den Ansatz von Rombach [76] durch einen additiven Term, welcher den Einfluss einer Biegebeanspruchung m_L unter dem Lastzentrum berücksichtigt.

$$b_{eff,H} = 0,6 + 0,95 \cdot h_a + 1,15 \cdot a + 130 \cdot \frac{m_L}{z_L \cdot f_{ck}}$$
(5.5)

mit z_L statischer Hebelsarm unterhalb des Lastzentrums

Im Model Code 2010 [101] wird für die Ermittlung der effektiven Plattenbreite $b_{eff,v,MC2010}$ vorgeschlagen, die Punktlast von der Rückseite der Aufstandsfläche auszubreiten (siehe Abbildung 5.11 (c)). Für eingespannte Platten wird ein Ausbreitungswinkel von $\alpha = 45^{\circ}$ bzw. für frei gelagerte Platten von $\alpha = 60^{\circ}$ angegeben. Der maßgebende Bemessungsschnitt wird dabei im Abstand der statischen Nutzhöhe d<a_/2 angenommen, wobei a_v der lichte Abstand zwischen Anschnitt und Lasteinleitungsbereich ist. Da der Bemessungsansatz gemäß MC2010 [101] über die Berücksichtigung des Dehnungszustandes eine Momenten-Querkraft Interaktion mit in die Bestimmung der Querkrafttragfähigkeit einbezieht, bleibt bei dieser Anwendung die Frage der effektiven Breite für Momentenbeanspruchung offen. Die Annahme des Bemessungsschnittes sowie des Lastausbreitungswinkels α kann hier nur in Kombination mit der Modelvorstellung gemäß MC2010 angewendet werden, eine Übertragung auf andere Normenansätze ist nur bedingt möglich.

Eine weitere und sehr häufig verwendete Methode stellt eine linear elastische Plattenberechnung mit Hilfe der Finiten Elemente Methode dar (siehe Abbildung 5.11 (d)). Jedoch bedarf auch diese Vorgehensweise eine Definition einer mitwirkenden Plattenbreite, da eine Bemessung auf Basis der maximal auftretenden Querkraftbeanspruchung v_{max} (siehe

🖉 AISIFI I INIAIG 🔰 bm🔍 🎁

Abbildung 5.11: Effektive Plattenbreite zur Bestimmung der Querkrafttragfähigkeit: (a) Hohlkastenquerschnitt mit LM1 am Kragarm (b) verschiedene Möglichkeiten der Lastausbreitung (c) Lastausbreitung gemäß MC 2010 [101] (d) Linear elastische FE-Berechnung

Neben der Lastausbreitung und der Bestimmung der nachweisrelevanten Schnittgrößen hat die Gurtneigung einen großen Einfluss auf die rechnerische Querkrafttragfähigkeit. Kragplatten weisen in der Regel stets eine veränderliche Bauteilhöhe auf, wodurch bei Momentenbeanspruchung geneigte Gurtkräfte entstehen (siehe Abbildung 5.12).

Bei Betrachtung des vertikalen Gleichgewichts im Bemessungsschnitt ergibt sich somit eine Vertikalkomponente V_{cc} , welche die einwirkende Querkraft $V_{Ed,0}$ abmindert und somit eine günstige Wirkung auf die Querkrafttragfähigkeit zur Folge hat.

 $V_{\scriptscriptstyle E} = V_{\scriptscriptstyle E,0} - V_{\scriptscriptstyle cc}$

(5.6)

Aufgrund der Abhängigkeit dieser Vertikalkomponente von der Biegebeanspruchung ist diese somit direkt gekoppelt an die effektive Breite und an den maßgebenden Bemessungsschnitt.

5.1.3.3 Versuche an Fahrbahnkragplatten

Zur Verifikation der zuvor genannten Punkte werden die in der Literatur verfügbaren Versuche an Kragplatten [67, 68, 69] herangezogen (siehe Anhang B). Die wesentlichsten Versuchsparameter der drei zur Verfügung stehenden Versuchsserien waren (siehe Tabelle 5.1, Abbildung 5.13 und Anhang C):

- Einfluss der Neigung der Voute α_v
- Einfluss einer linienförmigen Belastung (Randbalken) fq
- Anzahl der Einzellasten n_{Las}t
- Bauteilhöhe h
- Längsbewehrungsgrad ρ_ι

Abbildung 5.13: Typischer Querkraftversuch an einer Kragplatte

Abbildung 5.13 zeigt einen typischen Querkraftversuch an einer Kragplatte. Die Platten wurden durch Rechteckslasten, welche die Radlasten des Verkehrlastmodelles 1 repräsentieren, und zum Teil mit einer Linienlast f_q, welche die Belastung durch den Randbalken wiederspiegelt, belastet. Die in den Versuchen gewählte Laststellung wurde bei allen Versuchen größer als dreimal die statische Höhe (a/d>3,0) gewählt, weshalb ein Abtrag über eine direkte Druckstrebe ins Auflager ausgeschlossen werden kann. Es existiert derzeit nur ein einziger Versuch, in welcher die gesamte Doppel-Tandem Achslast des Verkehrslastmodelles 1 experimentell untersucht wurde (Versuch DR1a [68]). Die wesentlichsten Erkenntnisse aus den Versuchen können wie folgt zusammengefasst werden:

bm

- Die Traglaststeigerung bei gevouteten Fahrbahnplatten muss hinterfragt werden. In den Versuchen konnte durch Anordnung einer Voute keine Erhöhung in der Querkrafttragfähigkeit erzielt werden. In den derzeit gültigen Normenwerken wird dieser zusätzliche Traganteil zugelassen.
- Durch die Kombination von Linienlasten und Punktlasten konnte eine Erhöhung in den experimentellen Querkrafttragfähigkeiten erzielt werden.
- Der Versagensmechanismus war in allen Fällen ein sprödes Querkraftversagen in der Nähe der Lasteinleitung.

	αv	f _q	n _{last}	h _{Anschnitt}	ρι
Autor	[°]	[kN/m]	[-]	[mm]	[%]
Hegger,					
Reißen [67]	0-3,8	0-86,4	1	280	0,98
Muttoni, Vaz					
Rodriguez [68]	3,9	0	1-4	380	0,6-0,8
Rombach,					
Latte [69]	0-3,8	0-32,1	1	200-300	0,82-1,2

Tabelle 5.1: Übersicht über die untersuchten Versuchsparameter

5.1.3.4 Überprüfung verschiedener Ansätze bezüglich der mitwirkenden Plattenbreite für Querkraft beff,v

Zur Bewertung der verschiedenen Ansätze für die mitwirkende Plattenbreite für Querkraft beffy wurde ein Vergleich zwischen experimentellen und rechnerischen Schubtragfähigkeiten angestellt (siehe Abbildung 5.15). Die experimentellen Tragfähigkeiten beziehen sich dabei immer auf die in den Versuchsberichten angegebenen Bruchlasten. Die mitwirkende Plattenbreite für Querkraft beff.v wurde dabei gemäß DAfStB Heft 240 [75], für eine Lastausbreitung unter 45° vom Lastzentrum bzw. von der Außenkante der Lastaufstandsfläche, den Ansätzen von Rombach [76] bzw. Hegger, Reißen [67] sowie Model Code 2010 [101] berechnet. Da der Ansatz der Lastausbreitung und des Bemessungsschnittes gemäß MC2010 nur in Kombination mit dem darin festgelegten Bemessungsansatz (siehe Abschnitt 4.2.1.5) verwendet werden sollte, wurde auf eine Anwendung dieser Annahmen auf andere Normenwerken verzichtet. Alle anderen Ansätze zur effektiven Breite beff.v wurden ausschließlich mit der Bemessungsgleichung für Bauteile ohne Querkraftbewehrung gemäß Eurocode 2 [108,109,110,111] verwendet. Die auf Basis von Mittelwerten berechnete Tragfähigkeit nach Eurocode 2 [108,109,110,111] für Bauteile ohne Schubbewehrung (siehe Gleichung 4.1) wurde in Anlehnung an [63] für einen Vorfaktor von C_{Rm,c} = 0,15 bestimmt. Die Überschneidung der rechnerisch mitwirkenden Plattenbreiten, welche sich bei

mehreren Punktlasten ergeben kann, wurde für die hier durchgeführten Untersuchungen vernachlässigt (siehe Abbildung 5.14).

Abbildung 5.14: Überschneidung der effektiven Breite beff,v bei mehreren Radlasten

Für die in Abbildung 5.15 (a)-(e) dargestellten Vergleiche wurde der Bemessungsschnitt im Anschnitt der Kragplatte angenommen. Eine Lastausbreitung gemäß DAfStB Heft 240 [75] (siehe Abbildung 5.15 (a)) liefert für alle Versuche eine stark auf der sicheren Seite liegende Ergebnisse ($\bar{m} v_{exp}/v_{calc}=2,75$, $\sigma=0,72$). Während eine Verteilung der Querkräfte unter 45° vom Lastzentrum noch konservative Vergleichsresultate ergibt (siehe Abbildung 5.15 (b)), führt eine Ausbreitung von der Rückseite der Lastaufstandsfläche für einige Versuche bereits zu auf der unsicheren Seite liegenden Ergebnissen (siehe Abbildung 5.15 (c)). Die besten Übereinstimmungen ($\bar{m} v_{exp}/v_{calc}=1,31$, $\sigma=0,21$) konnten mit der empirische ermittelten effektiven Plattenbreite b_{eff,V} gemäß Hegger und Reißen [67] erzielt werden (siehe Abbildung 5.15 (e)). Die Erkenntnis, dass Versuche mit einer zusätzlichen Linienlast eine höhere Querkraft aufnehmen können, veranlasste sie den Ansatz zur Bestimmung der effektiven Breite b_{eff,V} von Rombach [76] um einen additiven Term zu erweitern, welcher die Momentenbeanspruchung unterhalb der Lasteinleitung mit einbezieht (siehe Gleichung 5.5).

Da der Bemessungsansatz gemäß MC 2010 [101] eine Momenten-Querkraft Interaktion berücksichtigt, wird für die effektive Plattenbreite für Biegung $b_{eff,M}$ derselbe Wert wie für Querkraft $b_{eff,V}$ herangezogen. Ein Vergleich zwischen rechnerischer und experimenteller Tragfähigkeit gemäß MC2010 [101] zeigt, dass die linienförmigen Belastung zu einer höheren Dehnung ε_x führt und somit eine geringere Querkrafttragfähigkeit zur Folge hat. Da die

bm

Gemäß Eurocode 2 [108,109,110,111] und fib Model Code 2010 [101] ist es erlaubt, die Vertikalkomponente der geneigten Druckgurtkraft v_{cc} , welche bei Anordnung einer Voute entsteht, von der einwirkenden Querkraft v_{Ed} abzuziehen. Die Höhe dieses Traganteils hängt wiederum vom einwirkenden Biegemoment m_{Ed} ab. Die Lastausbreitung für Biegung entspricht gemäß der linearen Elastizitätstheorie streng genommen nicht jener für Querkraft, weshalb zur Berechnung der Druckgurtkraft die Definition einer separaten effektiven Breite für Biegung b_{eff,M} erforderlich ist. Da Rombach [76] und Hegger [67] von der Verwendung dieses zusätzlichen Traganteils abraten, wird für deren Ansätze kein Vergleich angestellt. Abbildung 5.16 zeigt einen Vergleich der experimentellen und rechnerischen Querkrafttragfähigkeit mit Berücksichtigung der Vertikalkomponente v_{cc} der geneigten Druckgurtkraft. Die Anrechnung dieses zusätzlichen Traganteils v_{cc} in Kombination mit der Nachweisführung im Anschnitt der Kragplatte führt bis auf die Lastausbreitung gemäß DAfStB Heft 240 [75] in allen Fällen zu auf der unsicheren Seite liegenden Ergebnissen.

Abbildung 5.15: Vergleich der experimentellen und rechnerischen Querkrafttragfähigkeit von Fahrbahnplatten ohne Schubbewehrung für verschiedene mitwirkende Plattenbreiten und Normenwerke ohne Berücksichtigung der Vertikalkomponente v_{cc} der geneigten Druckgurtkraft: (a) EC2, DAfStB Heft 240 (b) EC2, 45° vom Lastzentrum (c) EC2, 45° von Außenkante Lasteinleitung (d) EC2, Rombach [76] (e) EC2, Hegger [67] (f) MC2010

Abbildung 5.16: Vergleich der experimentellen und rechnerischen Querkrafttragfähigkeit von Fahrbahnplatten ohne Schubbewehrung für verschiedene mitwirkende Plattenbreiten und Normenwerke mit Berücksichtigung der Vertikalkomponente v_{cc} der geneigten Druckgurtkraft: (a) EC2, DAfStB Heft 240 (b) EC2, 45° vom Lastzentrum (c) EC2, 45° von Außenkante Lasteinleitung (d) MC2010

5.1.4 Erkenntnisse für die Nachrechnung von bestehenden Tragwerken

Mit den in diesem Abschnitt angestellten Untersuchen können für die Nachrechnung von bestehenden Brückentragwerken folgende Erkenntnisse abgeleitet werden:

- Bei auflagernahen Laststellungen kann aufgrund der Lastableitung über eine direkte Druckstrebe (Sprengwerk) ein großer Teil der Querkräfte abgetragen werden. Gemäß Eurocode 2 [108,109,110,111] kann dieser Mechanismus entweder über eine Modellierung mit Stabwerken (Diskontinuitätsbereich) oder auf Querschnittsniveau mit den üblichen Bemessungsgleichungen in Kombination mit einem Reduktionsfaktor β für die einwirkende Querkraft abgebildet werden. Durch Auswertung der in [61] erstellten Versuchsdatenbank an gedrungenen Trägern ohne Schubbewehrung unter punktueller Belastung konnte gezeigt werden, dass eine Erhöhung dieses Reduktionsfaktors β für Bauteile ohne Schubbewehrung durchaus gerechtfertigt wäre. Bei der Bewertung von bestehenden Brückentragwerken ohne Schubbewehrung (Plattenbrücken und Fahrbahnplatten in Querrichtung) sollte daher dieser Reduktionsfaktor für wandernde Radlasten der Verkehrslastmodelle 1 und 2 in auflagernaher Stellung konsequent angewendet werden.
- Neben den Radlasten muss den gleichförmigen Belastungen eine große Bedeutung beigemessen werden. Am Vergleich mit den wenigen verfügbaren Versuchsdaten ließ sich der Trend erkennen, dass eine gleichmäßige Belastung ein günstigeres Tragverhalten gegenüber einer konzentrierten Lasteinleitung zur Folge hat. Der in den derzeitigen Normen festgelegte Bemessungsschnitt im Abstand d vom Auflager liefert konservative Ergebnisse. Es wird daher eine Verlegung des Bemessungsschnittes auf einen Abstand von 2d vom Auflager vorgeschlagen.
- Bei gleichmäßiger Belastung in Querrichtung ließ sich kein Einfluss der Bauteilbreite (Balken vs. Platte) in Bezug auf die Querkrafttragfähigkeit feststellen.
- Bei konzentrierter Lasteinleitung von Platten (Radlasten) spielt die Lastverteilung sowie die Umlagerungskapazitäten eine zentrale Rolle. In der Ingenieurpraxis stellt sich daher immer die Frage der mitwirkenden Plattenbreite b_{eff,V} von Querkräften. Der Vergleich von verschiedenen Ansätzen von Lastverteilungen in Kombination mit dem Widerstandsmodell des Eurocode 2 mit experimentellen Ergebnissen von Versuchen an auskragenden Fahrbahnplatten konnte zeigen, dass die üblichen Verfahren (Lastausbreitung DAfStB Heft 240 bzw. 45° Verteilung vom Lastzentrum) zu konservative Ansätze darstellen.

bm

- Eine linienförmige Belastung am Kragarm, welche sich stets durch das Eigengewicht des Randbalkens ergibt, führt zu einer günstigeren Lastverteilung der konzentrierten Radlasten. Der von Hegger und Reißen [67] erweiterte Ansatz von Rombach [76] erlaubt daher in diesen Fällen eine größere effektive Plattenbreite in Abhängigkeit der Momentenbeanspruchung unterhalb der Lastaufstandfläche. Diesen Einflussparameter gilt es jedoch noch mit zusätzlichen Experimenten abzusichern.
- Der zusätzliche Traganteil aus der Vertikalkomponente des geneigten Druckgurts v_{cc} bei gevouteten Kragplatten führt bei einer Bemessung im Kragarmanschnitt zu auf der unsicheren Seite liegenden Resultaten. Dieser zusätzliche Traganteil ist kritisch zu hinterfragen und sollte ebenso mit weiteren gezielten experimentellen Untersuchungen verifiziert werden.

5.2 Einfluss einer Vorspannkraft

5.2.1 Allgemeines

Die Untersuchung dieses Einflusses drängt sich auf, da vor allem Spannbetonbrücken, welche gemäß DIN 4227:1953 [125] geplant und errichtet wurden, als querkraftgefährdet einzustufen sind. Das Versäumnis einer klaren Definition einer Mindestschubbewehrung $a_{sw,min}$ in Kombination mit dem Hauptzugspannungsnachweis im ungerissenen Zustand unter Bruchlast haben in der Praxis dazu geführt, dass die Stege so dick ausgeführt wurden, dass die schiefen Hauptzugspannungen σ_1 die zulässigen Zugspannungen nicht überschritten und somit nur eine sehr schwache Querkraftbewehrung angeordnet wurde.

Dies wurde bekanntlich durch die 1966 veröffentlichten "Ergänzenden Bestimmung zur DIN 4227" ausgemerzt, in dem man einen verbindlichen Wert zu Mindestschubbewehrung einführte und die zulässigen schiefen Hauptzugspannungen verringerte. Die in diesem Abschnitt bzw. Arbeitspaket angeführten Untersuchungen basieren auf einer kleinen Anzahl von brauchbaren Versuchen. Gerade auf dem Gebiet mit vorgespannten Bauteilen bedarf es noch weiterer Forschung.

5.2.2 Tragverhalten bei Spannbetonbauteilen ohne Querkraftbewehrung

Vorgespannte Plattenbrücken bzw. auch Fahrbahnplatten mit Vorspannung in Querrichtung kommen im Brückenbau selten vor. Dennoch soll der Einfluss der Vorspannung auf das Tragverhalten von Bauteilen ohne Querkraftbewehrung untersucht werden.

Im ungerissenen Zustand kann das Querkraftverhalten von vorgespannten Bauteilen mit Hilfe der Technischen Biegelehre beschrieben werden (siehe Abschnitt 2.2). Die infolge

Vorspannung erzeugte Drucknormalspannung σ_{cp} führt dazu, dass zum Erreichen der Biegerisslast bereits ein beträchtliches Biegemoment M_{cr} notwendig ist. Bei Erreichen der Materialfestigkeiten des Betons bilden sich erste Risse, wodurch die technische Biegetheorie ihre Gültigkeit verliert. Der sich dadurch einstellende komplexe Kräftezustand muss nun mit anderen Modellvorstellungen beschrieben werden. Im Gegensatz zu Spannbetonträgern mit relativ dünnen Stegen erreicht bei Spannbetonplatten die Hauptzugspannung σ_1 auf Höhe der Nulllinie nicht die Materialfestigkeit und es kommt daher zu keiner reinen Schubrissbildung.

bm

Abbildung 5.17: Einfluss der Vorspannung auf die Rissbildung – Versuchsserie Zink [16]

Wie in Abschnitt 5.1.1 erläutert, kann bei Stahlbetonbauteilen bei auflagernaher Laststellung ein Großteil der Querkraft über eine Druckstrebe direkt ins Auflager abgeleitet werden. Dieser Tragmechanismus wird mit zunehmendem Abstand der Last vom Auflager (größere Schubschlankheit a/d) durch die ausgeprägte Biegerissbildung unterbunden, weshalb die Schubrissbildung bei schubschlanken Stahlbetonbauteilen zumeist auch der Traglast entspricht. Bei Spannbetonbauteilen bleibt aufgrund der Normalspannung infolge Vorspannung σ_{cp} in der Regel ein deutlich größerer Bereich neben dem Auflager ungerissen (siehe Abbildung 5.17). Die Größe der ungerissenen Zone hängt zum einen von der Größe der Vorspannkraft P und zum anderen von der Zugfestigkeit f_{ct} des Betons ab. Darüber hinaus bewirkt die Normalkraft, dass die Höhe des ungerissenen Bereichs immer abhängig von der Höhe der Biegebeanspruchung ist, wodurch die Risse nicht sofort so weit in den Querschnitt hineinragen als dies bei Stahlbetonbauteilen der Fall ist. Wie man auch in Abbildung

5.17 erkennen kann, wird dadurch die theoretische Druckstrebe auch bei einer schubkritischen Schubschlankheit a/d von über 3 nicht durch Biegerisse durchkreuzt, weshalb die Biegeschubrissbildung bei vorgespannten Bauteilen zumeist nicht zu einem sofortigen Versagen der Struktur führt. Das Tragwerk kann auf ein sogenanntes "Sprengwerk" umlagern, wodurch zum Teil eine erhebliche Laststeigerung über die Schubrisslast hinaus möglich ist (V_u>V_{s.cr}). Die Rissbilder sowie die experimentellen Schubriss- und Traglasten aus der in Abbildung 5.17 ersichtlichen Versuchsserie von Zink [16] können diesen Mechanismus bestätigen. Die in den Normen angegebenen Ansätze zur Bestimmung der Querkrafttragfähigkeit von Spannbetonbauteilen ohne Schubbewehrung beziehen sich auf die Schubrissbildung V_{s.cr}. Die Systemumlagerung auf ein Sprengwerk und die somit zum Teil deutlich höheren Traglasten V_u werden für die Bemessung nicht berücksichtigt. Wie in Abbildung 5.18 ersichtlich kann sich diese Umlagerung nicht in jedem Fall ausbilden. Die Vorgehensweise der normativen Ansätze auf diese Tragkapazität permanent zu verzichten, scheint somit gerechtfertigt.

Abbildung 5.18: Verhältnis der Bruchlast V_u zur Schubrisslast V_{s,cr} in Abhängigkeit von (a) Normalspannung σ_{cp} (b) Schubschlankheit a/d

Nichtsdestotrotz kann bereits auch bei Schubrissbildung ein Anteil der Querkraft direkt abgetragen werden. Es kann somit angenommen werden, dass sich die Talsohle des Schubtales nach Kani [24] (siehe Abbildung 5.1) für vorgespannte Bauteile aufgrund der günstigen Wirkung der Vorspannkraft in Richtung höherer Schubschlankheiten a/d verschiebt. Da leider keine Versuchsserie zur alleinigen Untersuchung der Schubschlankheit a/d für vorgespannte Bauteile ohne Schubbewehrung bis jetzt durchgeführt wurde, kann dieser Einfluss nur mit der im nächsten Kapitel durchgeführten nichtlinearen Finite-Elemente Simulation verifiziert.

5.2.3 Tragverhalten bei Spannbetonbauteilen mit Querkraftbewehrung

5.2.3.1 Tragverhalten im ungerissenen Zustand

Bei Spannbetonträgern werden im ungerissenen Zustand die Hauptzugspannungen σ_1 (siehe Gleichung 2.1) infolge der Normalspannungen infolge Vorspannung zwar reduziert, aufgrund der Schubspannung treten jedoch weiterhin schiefe Zugspannungen σ_1 auf, die jedoch deutlich steiler gerichtet sind als dies zum Beispiel bei Stahlbetonbauteilen der Fall ist. Überschreiten diese Zugspannungen die Zugfestigkeit bilden sich Schubrisse im Steg, welche in etwa die Neigung der Hauptdruckspannungsrichtung annehmen.

5.2.3.2 Zoneneinteilung in Anlehnung an das Rissbild

Bereits 1996 schlugen Bachmann und Thürlimann [71] aufbauend auf Versuchsbeobachtungen eine in Zonen unterteilte Querkraftbemessung von Spannbetonträgern vor (siehe Abbildung 5.19):

- Zone A: in diesem Bereich bleiben die Hauptzugspannungen σ_1 sowohl an der Zugfaser als auch im Steg unterhalb der Materialfestigkeit des Betons, d.h. der Querschnitt bleibt frei von Rissen. Diese Zone befindet sich meist am Endauflager bzw. im Momentennullpunkt bei durchlaufenden Systemen bei geringer Querkraftbeanspruchung.
- Zone B: die schiefe Hauptzugspannung σ_1 überschreitet im Steg die Zugfestigkeit des • Betons. Die Schubrisse gehen hier nicht von einem Biegeriss aus, sondern verbleiben ausschließlich auf den Steg begrenzt. Solche Risse entstehen bevorzugt bei stark profilierten Trägern (Hohlkästen) mit dünnen Stegen. Bei zu geringer Schubbewehrung kann in diesem Bereich ein Abreißen der Bügelbewehrung zum Versagen des Trägers führen.
- Zone C: in diesem Bereich entwickeln sich die Schubrisse aus den Biegerissen, welche sich bei Überschreitung der Zugfestigkeit am unteren Betonrand bilden. Das Tragverhalten entspricht in dieser Zone jenem von Stahlbetonbauteilen. Die bei der Schubrissbildung freiwerdenden Zugkräfte werden bei ausreichender Querkraftbewehrung von dieser aufgenommen. Bei weiterer Belastung gerät die Bügelbewehrung ins Fließen, wodurch der kritische Schubriss die Betondruckzone einschnürt. Die Zerstörung der Druckzone in Kombination mit dem Erreichen der Zugfestigkeit der Bügelbewehrung kann in diesem Bereich ein vorzeitiges Schubversagen einleiten.

Abbildung 5.19: Rissbild des Versuchsträgers TG1 von Leonhardt [66] – Einteilung in verschiedene Zonen

Die Länge der einzelnen Zonen hängt vom Grad der Vorspannung, der Spanngliedlage, den Abmessungen des Querschnitts, der Belastung und der Zugfestigkeit des Betons ab. Zudem können natürlich Eigenspannungen, welche z.B. infolge Schwinden oder Abfließen der Hydratationswärme entstehen, dazu führen, dass die Rissbildung bereits deutlich früher eintritt. Darüber hinaus erfolgt die Abgrenzung der Zonen zumeist nach einer Berechnung im ungerissenen Zustand. Dies ist jedoch gerade für den Bereich B zumeist nicht mehr zweckmäßig, da die bereits vorausgegangene Rissbildung in der Zone C und die dadurch bedingte Umlagerung der inneren Kräfte in den noch ungerissenen Bereich dort zu einer höheren Belastungen führen kann. Auf die Abgrenzung der Zonen wird in Kapitel 7 noch näher eingegangen.

5.2.3.3 Einfluss des Vorspanngrades

Bei Bauteilen mit sehr geringer Schubbewehrung und moderaten Stegdicken wird das Versagen in der Regel durch das Fließen der Bügelbewehrung eingeleitet. Durch die Lokalisierung der Dehnung in einem sogenannten "kritischen" Schubriss kommt es bei Laststeigerung zu einer Einschnürung der Druckzone, wodurch sich die Kräfte immer mehr auf die Bügel umlagern bis diese schließlich die Zugfestigkeit erreichen und abreißen.

Deshalb schenkten Leonhardt et al. [66] in Stuttgart und Caflisch/Thürlimann [78] in Zürich in ihren Schubversuchen an Spannbetonträgern der Messung der Dehnung der Bügelbewehrung ihr besonderes Interesse. Durch Variation des Vorspanngrades, des Längsbewehrungsgrades p_I, der Querschnittsform und der Spanngliedführung waren sie in der Lage einige hauptsächliche Einflüsse auf die Querkrafttragfähigkeit von Spannbetonträgern zu untersuchen. Diese beiden Versuchsreihen gelten aufgrund der sehr ausführlichen und qualitativ hochwertigen Dokumentation in den Versuchsberichten als Benchmark für die Verifikation von Ansätzen zur Querkraftbemessung von Spannbetonträgern. Für nähere Details zu den Versuchen wird auf die jeweiligen Literaturstellen verwiesen.

bm

Abbildung 5.20: Experimentelle Bügelspannungen in Abhängigkeit des Vorspanngrades anhand von Versuchsserien entnommen aus: (a) Leonhardt et al. [66] (b) Caflisch und Thürlimann [78]

Abbildung 5.20 (a) zeigt die aus den gemessenen Dehnungen ermittelten Bügelspannungen σ_{sw} für verschiedene Vorspanngrade in Abhängigkeit der einwirkenden Querkraft für die Versuchsserie IP mit konstanten Längsbewehrungsgrad ($\rho_i = \rho_s + \rho_p$) von Leonhardt et al. [66]. Das Bild zeigt zum einen, dass im ungerissenen Zustand die Bügelbewehrung unbeansprucht blieb und zum anderen, dass mit zunehmenden Vorspanngrad die Schubrisslast ansteigt und somit auch der Belastungszeitpunkt an dem die Schubbewehrung am Querkraftabtrag mitwirkt, verschoben wird. Eine weitere Kernaussage dieses Diagramms (siehe Abbildung 5.20 (a)) ist auch, dass die Bügelspannungen σ_{sw} mit zunehmenden Vorspanngrad immer deutlicher von der theoretischen Spannung nach dem Mörsch'schen Fachwerk (45° Druckstrebenneigung θ) abweichen. Es ist jedoch auch auffällig, dass die Zunahme der Spannungen bei Laststeigerung über die Schubrisslast hinaus steiler verlaufen als gemäß 45° Fachwerk vorhergesagt. Der dennoch relativ geringe Abstand zum Mörsch'schen Fachwerk, im speziellen bei geringen Vorspanngraden, lässt sich zum einen aufgrund der geringen Zuggurtsteifigkeit (geringer Längsbewehrungsgrad pi) und zum anderen aufgrund des relativen hohen Querkraftbewehrungsgrad $p_w = 0.54\%$ erklären. Wie in Abbildung 5.20 (b) ersichtlich, wurden auch in der Versuchsserie A von Caflisch/Thürlimann

[78] auch die maßgebenden Bügelkräfte im Schubfeld gemessen. In ihrer Serie wurde jedoch nicht wie bei Leonhardt et al. [66] der Vorspanngrad bei gleichbleibender Spanntahlmenge (ρ_p =konst, σ_p =var.) überprüft, sondern darauf geachtet, dass die Summe der Fließkräfte der unterschiedlichen Stahlarten in etwa gleich groß sind (ρ_s , ρ_p =var.) und sich somit ein gleichmäßige Biegewiderstand für alle Versuchsträger ergibt. Darüber hinaus wurde der Querkraftbewehrungsgrad ρ_w mit zunehmender Vorspannung von 0,9% auf 0,38% abgemindert. Die bei Leonhardt et al. [66] festgestellten Zusammenhänge konnten auch in dieser Versuchsserie bestätigt werden. Des Weiteren ließ sich eine deutliche Abhängigkeit der Bügelspannung σ_{sw} von der Steifigkeit des Zuggurtes erkennen. Je geringer der Längsbewehrungsgrad ρ_i desto steiler die Zunahme der Bügelspannungen σ_{sw} nach der Schubrissbildung.

bm

Abbildung 5.21: Experimentelle Untersuchungen von Spannbetonträgern mit Schubbewehrung von Moayer und Regan [84]: Experimentelle Querkrafttragfähigkeit in Abhängigkeit: (a) des Längsbewehrungsgrades ρ_s (b) der Normalspannung infolge Vorspannung σ_{cp}

Abbildung 5.21 zeigt die experimentellen Untersuchungen an Spannbetonträgern mit geringen Schubbewehrungsgrad ρ_w von Moayer und Regan [84]. Da im Versuchsbericht keine Messungen von Bügeldehnungen angegeben wurden, kann nur ein Vergleich der maximal erzielten Traglast in Abhängigkeit des Längsbewehrungsgrades ρ_s und der Normalspannung infolge Vorspannung σ_{cp} (bei veränderter Spannstahlmenge A_p) gezeigt werden. Die Versuche konnten einerseits bestätigen, dass mit zunehmender Zuggurtsteifigkeit (in diesem Fall zusätzliche schlaffe Längsbewehrung) auch die Querkrafttragfähigkeit ansteigt (siehe Abbildung 5.21 (a)). Anderseits konnte gezeigt werden, dass sich mit zunehmender Vorspannkraft P auch die Schubtragfähigkeit erhöht (siehe Abbildung 5.21 (b)). Darüber hinaus lässt sich die markante Anhebung des Querkraftwiderstandes bei Anordnung einer stärkeren Schubbewehrung deutlich erkennen.

117

5.2.3.4 Einfluss geneigter Spannglieder

Über den Querkrafttraganteil V_p der geneigten Zugkraft in den Spanngliedern existiert kein Zweifel. Die Spanngliedlage und die daraus resultierende Neigung α_p hat darüber hinaus einen wesentlichen Einfluss auf den vorherrschenden Spannungszustand im Schubfeld (siehe Abbildung 5.22). Der an der unteren Faser ungerissene Bereich wird bei gerader tiefliegender Spanngliedlage verlängert, wodurch sich die kritischen Zonen B und C weiter vom Auflager entfernen.

Abbildung 5.22: Einfluss der Spanngliedneigung auf den gedrückten Bereich - Druckbogen

Leonhardt [66] wies bereits in den 70er Jahren des letzten Jahrhunderts auf den Traganteil des geneigten Druckgurtes hin, wobei dabei nicht jener von Trägern mit linear veränderlicher Höhe gemeint war. Da die Druckzonenhöhe c bei Spannbetonträgern belastungsabhängig ist, weist die Druckresultierende im Obergurt bei veränderlicher Momentenbeanspruchung in Längsrichtung einen veränderlichen Angriffspunkt auf. Dies ist natürlich bei fortgeschrittener Biegerissbildung nicht mehr gegeben, da die Biegerisse dann über eine größere Länge bis an die theoretische Nulllinie reichen und somit eine konstante Druckzonenhöhe in Längsrichtung zur Folge hat. Bei moderater Biegebeanspruchung hingegen kann der geneigten Druckgurtkraft somit ein Querkraftanteil V_{cc} zugesprochen werden (siehe Abbildung 5.22). Ein Hochführen der Spanngliedachse in den Schwerpunkt hat zur Folge, dass die Druckresultierende nach oben wandert und dadurch ihr Neigungswinkel verringert wird. Die dadurch verringerte Vertikalkomponente der Druckgurtkraft führte laut [66] und [79] dazu, dass in den Versuchen kein signifikanter Unterschied in der Bruchlast bei Trägern mit unterschiedlicher Spanngliedneigung zu erkennen war. Geneigte Spannglieder führen darüber hinaus zu einer Verlängerung der schubkritischen Zone C, in welcher dieser sogenannte Druckbogen über eine relativ große Länge horizontal verläuft und somit keinen Beitrag zum Querkraftwiderstand leisten kann. Dieser Tragmechanismus spielt auch in diversen aktuellen Ansätzen eine maßgebende Rolle in der Bestimmung der Querkrafttragfähigkeit von Spannbetonträgern [46, 80, 99]. Bei Stahlbetonträgern kann sich aufgrund des ausgeprägten Rissbildes im Vergleich zum Spannbeton dieser Druckbogen nicht in diesem Ausmaß ausbilden. Ein besonderes Augenmerk bei hochgeführten Spanngliedern

bm

Aufgrund der relativ kleinen Anzahl an brauchbaren und gut dokumentierten Versuchsergebnissen bedarf es weiterer experimenteller Untersuchungen um den Einfluss der Vorspannung auf die Schubtragfähigkeit im Speziellen von Bauteilen mit nur sehr schwacher Querkraftbewehrung detaillierter analysieren zu können. Die Auswertung der wenigen verfügbaren Daten von Querkraftversuchen an Spannbetonträgern mit geringer Schubbewehrung (siehe Abschnitt 3.3 und Anhang B) in Abschnitt 4.5.2 zeigt jedoch, dass vorgespannte Bauteile auch mit nur geringer Schubbewehrung einen über die Schubbewehrung hinausgehenden Traganteil aufweisen. Dies konnten auch die zahlreichen am Institut für Tragkonstruktionen durchgeführten Querkraftversuche an bestehenden Spannbetonbrückenträgern bestätigen [81, 82, 83].

6 NUMERISCHE SIMULATIONEN

6.1 Zielsetzung und Vorgehensweise

Mit den in diesem Kapitel durchgeführten nichtlinearen Finite-Elemente Berechnungen soll eine Erweiterung der in Abschnitt 3.3 erstellten Datenbank geschaffen werden. Dabei wird besonderes Augenmerk auf die in Kapitel 5 analysierten Einflussparameter (Laststellung und Vorspannung) gelegt. Im Rahmen dieser numerischen Untersuchungen kam das nichtlineare Finite-Elemente Programm ATENA von Červenka Consulting [85] zur Anwendung. Im Zuge dieses Forschungsvorhabens wurde um den Rechenaufwand in Grenzen zu halten ausschließlich mit zweidimensionalen Scheibenmodellen gearbeitet. Für die typischen auf Querkraft beanspruchten einachsig gespannten Bauteile ist diese Vorgehensweise ausreichend (Träger, einachsig gespannte Platten), da sich die Beanspruchungen mit in einem ebenen Spannungszustand ausreichend genau beschreiben lässt. Um jedoch die Problematik der Lastausbreitung von Querkräften in Querrichtung zu untersuchen, bedarf es jedoch einer dreidimensionalen FE-Berechnung, welche deutlich mehr Prozessorzeit in Anspruch nimmt. Eine Simulation dieses Einflusses konnte somit im Zuge dieses Forschungsvorhabens nicht berücksichtigt werden. Zusätzlich muss infrage gestellt werden, inwieweit die derzeitig verfügbaren nichtlinearen Finite Elemente Programme im-

stande sind, dieses komplexe zweiachsige Tragverhalten realitätsnah abzubilden. Wie später noch näher erläutert wird, stellt bereits der einachsige Querkraftabtrag bei Bauteilen ohne Schubbewehrung eine fordernde Aufgabe dar.

6.2 Numerisches Modell

6.2.1 Allgemeines

Zur Abbildung des Materialverhaltens von Beton, Betonstahl und Spannstahl stehen in A-TENA verschiedene Materialmodelle zur Verfügung, welche im Folgenden kurz beschrieben werden. Für nähere Details wird auf die ausführliche Darstellung der theoretischen Grundlagen von Červenka [85] verwiesen. Im Zuge der hier angestellten numerischen Berechnungen kam das konstitutive Materialmodell SBETA zur Anwendung, weshalb sich die nachfolgenden Erläuterungen ausschließlich auf dieses Modell beziehen.

Bei Nachrechnung von realen Versuchen wurden die Materialkennwerte auf Grundlage von Baustoffprüfungen gewählt. Nicht geprüfte Materialkennwerte wurden im Falle des Materials Beton aus der Druckfestigkeit fc rückgerechnet.

6.2.2 Materialmodell Beton

Beton zeigt unter kurzfristiger einachsiger Druckbeanspruchung den in Abbildung 6.1 typischen nichtlinearen Zusammenhang zwischen Spannung σ_c und Dehnung ε_c . Während der Verlauf zu Beginn noch ein nahezu linear elastisches Verhalten aufweist, bewirkt die beginnende Mikrorissbildung eine kontinuierliche Steifigkeitsabnahme, welche sich in einer Zunahme der Dehnungen äußert. Bei verformungsgesteuerten Bruchversuchen kommt es nach dem Erreichen der Betondruckfestigkeit f_c zu einem Abfall der Spannung bei gleichzeitiger schnell anwachsender Dehnung. Der abfallende Ast ist dabei stark abhängig von der Belastungsgeschwindigkeit und der Prüfkörpergeometrie.

Der Zusammenhang zwischen Druckspannung σ_c und Dehnung ϵ wird für den ansteigenden Ast in ATENA gemäß dem Ansatz des Model Code 1990 [100] folgendermaßen mathematisch beschrieben.

$$\sigma_c^{ef} = f_c^{ef} \cdot \frac{kx - x^2}{1 + (k - 2)x} \quad \text{mit} \quad x = \frac{\varepsilon}{\varepsilon_c}, \quad k = \frac{E_0}{E_c}$$
(6.1)

Durch die Definition von k (Verhältnis des Elastizitätsmoduls E_0 als Tangente im Ursprung und des Sekantenmodules E_c durch den Ursprung und dem Scheitelpunkt) und x (Verhältnis zwischen Dehnung ϵ und Dehnung ϵ_c bei Erreichen der Druckfestigkeit) kann Gleichung 6.1 sowohl für normalfesten als auch hochfesten Beton angewendet werden.

Das Nachbruchverhalten von Beton auf Druck wird in ATENA über eine linear abfallende Spannungs-Verschiebungsbeziehung, welche auf experimentellen Untersuchungen von [86] basiert, simuliert (siehe Abbildung 6.2 (a)). Mit der Definition der maximalen plastischen Verschiebung w_d kann somit das Schädigungsverhalten von Beton auf Druck charakterisiert werden.

Beton folgt unter Zugbeanspruchung im ungerissenen Zustand einem linear elastischen Materialverhalten (siehe Abbildung 6.1):

$$\sigma_c^{ef} = E_c \varepsilon_{eq} \quad \text{für} \quad 0 \le \sigma_c \le f_t^{ef} \tag{6.2}$$

Die Modellierung des Nachbruchverhaltens ("tension softening") wird über eine Spannungs-Rissöffnungs-Beziehung und die Definition der Bruchenergie G_f bestimmt. Gemäß [85] stehen dafür diverse Verläufe zur Verfügung, wobei in diesem Falle das exponentielle Gesetz von Hjordik [87] (siehe Abbildung 6.2 (b)) verwendet wurde:

$$\frac{\sigma}{f_c^{'ef}} = \left\{ 1 + \left(c_1 \frac{w}{w_c}\right)^3 \right\} \cdot e^{\left(-c_2 \frac{w}{w_c}\right)} - \frac{w}{w_c} \left(1 + c_1^3\right) \cdot e^{-c_2} \quad \text{mit} \quad w_c = 5, 14 \cdot \frac{G_f}{f_c^{'ef}}$$
(6.3)

mit

W Rissöffnung

W_c Maximale Rissöffnung

 c_1, c_2 Konstanten

 $f_c^{'ef}$ Effektive Zugfestigkeit gemäß Abbildung 6.3

Die Bruchenergie G_f wurde dabei in Anlehnung an den Model Code 2010 [101] gewählt:

Abbildung 6.2: Beschreibung des Schädigungsverhaltens von Beton entnommen aus [85]: (a) "Compression softening" nach Versuchen von [86] (b) Rissöffnungsgesetz nach Hjordik [87]

Da im Betonbau viele Bauteile als ebene Strukturen idealisiert werden können, muss dem zweiachsigen Materialverhalten von Beton besondere Beachtung geschenkt werden.

In ATENA wird dafür das von Kupfer [39, 88] vorgeschlagene zweiachsige Versagenskriterium angewendet (siehe Abbildung 6.3 bzw. Abschnitt 7). Bei zweiachsialen Druckbeanspruchungen zeigt sich eine deutliche Erhöhung der Druckfestigkeit. Im Zug-Druck Bereich sinkt die aufnehmbare Druckspannung $f_{c,eff}$ wie erwartet bei ansteigenden Querzug σ_2 bzw. die aufnehmbare Zugspannung $f_{ct,eff}$ verringert sich bei zunehmender Druckbeanspruchung σ_1 . Deshalb wird in den Gleichungen 6.1 und 6.2 auch von effektiven Materialfestigkeiten gesprochen. Die Materialfestigkeiten sind somit direkt proportional zum vorherrschenden Spannungszustand. Bei biachsialer Zugbeanspruchung hingegen ergibt sich kaum ein Unterschied zur einachsigen Zugfestigkeit f_{ct} .

Abbildung 6.3: Biachsiales Versagenskriterium nach Kupfer et al. [39, 88]

Das Betonmodell SBETA basiert auf einem verschmierten Rissmodell (im Gegensatz zum diskreten Rissmodell), indem das "Fixed Crack Model" oder das "Rotating Crack Model"

gebräuchlich sind. Die hier durchgeführten numerischen Untersuchungen beziehen sich ausschließlich auf das Erstgenannte (siehe Abbildung 6.4).

Abbildung 6.4: Dehnungs- und Spannungszustand beim "Fixed Crack Model" entnommen aus [85]

Im "Fixed Crack Model" ergibt sich die Rissrichtung aus der Neigung der Hauptspannung bei Rissbildung. Bei Laststeigerung bleibt diese Richtung fixiert und stellt somit die Materialachsen für das weitere orthotrope Materialverhalten dar.

Aufgrund der Abweichung der Hauptdehnungsrichtungen von der Richtung der orthotropen Materialachsen entstehen Schubspannungen. Daher ist es bei Anwendung des "Fixed Crack Model" notwendig, den Schubmodul G_c bei Rissbildung abzumindern. Dies geschieht in ATENA mittels eines sogenannten "Shear Retention"-Faktors (siehe Abbildung 6.5, wobei für die hier angestellten Berechnung der Ansatz von Kolmar [89] (siehe Gleichung 6.4) verwendet wird.

Abbildung 6.5: Shear Retention-Faktor nach Kolmar [89] entnommen aus [85]

Das ursprüngliche Modell von Kolmar [89] sieht vor, die Schubsteifigkeit in Abhängigkeit der Hauptzugdehnung und des Bewehrungsgrades ρ zu verringern. Auf eine Berücksichtigung des Bewehrungsgrades wird jedoch gemäß [85] verzichtet:

$$G = r_g \cdot G_c \tag{6.4}$$

mit

🖉 AISIFI i INIAIG 🔰 bm🔍 🚺

$$r_{g} = c_{3} \cdot \frac{\frac{-\ln(1000 \cdot \varepsilon_{1})}{c_{1}}}{c_{2}}$$
$$c_{1} = 7 + 333(\rho - 0,005)$$

$$c_2 = 10 - 167(\rho - 0,005)$$

Die Höhe der Schubsteifigkeit (Shear Retention Faktor) ist gerade für querkraftgefährdete Bauteile ein wesentlicher Einflussparameter.

6.2.3 Materialmodell Bewehrung

Die schlaffe Bewehrung kann in ATENA entweder verschmiert oder diskret modelliert werden, während für die Spannbewehrung nur eine diskrete Darstellung herangezogen werden kann. Im Zuge der hier durchgeführten Analysen wird die diskrete Modellierung bevorzugt, da mit ihr der Spannungszustand in der Bewehrung bzw. im Spannstahl ermittelt werden kann. Die Bewehrung wird dabei als Fachwerkstab, welcher im Beton eingebettet ist, abgebildet. Das einachsiale Materialverhalten der Bewehrung bzw. der Spannbewehrung kann dabei durch verschiedene Spannungs-Dehnungs-Beziehungen angenähert werden. Für die in diesem Kapitel durchgeführten numerischen Berechnungen wurde eine bilineare Beziehung, d.h. ein linear elastisches – ideal plastisches Materialverhalten, unterstellt (siehe Abbildung 6.6).

Abbildung 6.6: Linear elastisches – ideal plastische Materialverhalten der Bewehrung entnommen aus [85]

Darüber hinaus wird angenommen, dass zwischen Bewehrung bzw. Spannstahl ein starrer Verbund herrscht.

ASFINAG

6.2.4 Diskretisierung

Im Zuge dieses Forschungsvorhabens wurde ausschließlich die Situation von Einfeldsystemen analysiert. Um Rechenzeit zu sparen, wurde stets eine symmetrische Belastung gewählt, um dadurch die Symmetrieeffekte ausnützen zu können und somit nur die Hälfte des Trägers zu modellieren.

Da die numerischen Berechnungen auf Basis von Versuchsdaten kalibriert wurden, wurde die Versuchsdurchführung als 4-Punkt Biegeversuch bei den numerischen Simulationen beibehalten. Der Versuchskörper wurde mit quadrilateralen Scheibenelementen mit 4 Gauß'schen Integrationspunkten diskretisiert. Die Lasteinleitung erfolgte weggesteuert wie in den Versuchen über Stahlplatten, wobei in Abhängigkeit der Steifigkeit des Systems verschiedene Lastschritte gewählt wurden.

6.3 Ergebnisse der Untersuchungen

Zur Kalibrierung und Verifikation der numerischen Berechnungen wurde eine sehr bekannte Versuchsreihe von Leonhardt und Walther [20] zur Untersuchung des Einflusses der Schubschlankheit a/d auf die Querkrafttragfähigkeit von Bauteilen ohne Schubbewehrung herangezogen. Abbildung 6.7 zeigt den typischen 4-Punkt Biegeversuch und die Eckdaten zu dieser Versuchsserie. Die Versuchsträger wiesen zur Vermeidung eines vorzeitigen Biegeversagens einen relativ hohen Längsbewehrungsgrad ρ_{I} von 2,0% auf. Somit war es jedoch möglich eine relativ große Bandbreite an Schubschlankheiten a/d zu testen.

Abbildung 6.7: Versuchsserie von Leonhard und Walther [20] zur Untersuchung des Einfluss der Schubschlankheit a/d

In Abbildung 6.8 (a) sind die numerischen und experimentellen Bruchlasten in Abhängigkeit der Schubschlankheit gegenübergestellt. Für die schubschlanken Träger (a/d \ge 2,5) konnte mithilfe der numerischen Berechnungen eine sehr gute Übereinstimmung mit den Versuchsergebnissen erzielt werden. Für die gedrungenen Balken (a/d<2,5) steigt mit abnehmender Schubschlankheit a/d die Abweichung zwischen den Experimenten und der nicht-linearen FE-Berechnung.

Abbildung 6.8: Versuchsserie von Leonhard und Walther [20] zur Untersuchung des Einfluss der Schubschlankheit a/d: (a) Vergleich experimentelle und rechnerische Bruchlasten (b) numerische ermittelte Last-Verformungsbeziehungen

Wie man anhand der in Abbildung 6.8 (b) dargestellten Querkraft-Durchbiegung Beziehungen erkennen kann, konnte man mit den FE-Modellen die Umlagerung auf ein Sprengwerk reproduzieren. Bei einer Schubschlankheit a/d = 2,5 führte die Schubrissbildung nicht zum sofortigen Versagen der Struktur, sondern es konnte gerade noch ein im Gleichgewicht stehendes Tragsystem gefunden. Jedoch war es nicht mehr möglich die Belastung über die Schubrisslast hinaus zu steigern. Bei dem Balken mit a/d=2 war die Schubrissbildung zwar mit einem markanten Abfall in der Kraft gekennzeichnet, die Abtragung über die direkte Druckstrebe ließ den Balken jedoch eine deutlich höhere Querkrafttragfähigkeit erreichen.

NERA

Abbildung 6.9: Versuchsserie von Leonhard und Walther [20] zur Untersuchung des Einfluss der Schubschlankheit a/d: (a) Experimentelle Rissbilder (b) Rissbilder aus ATENA für Rissöffnung w>0,05mm

Der Vergleich der Rissbilder (siehe Abbildung 6.9) zeigt auch eine passable Übereinstimmung zwischen den Experimenten und der nichtlinearen Finite Elemente Simulation. In den numerischen Modellen konnte auch die bereits in Abschnitt 5.1.1 angeführte Erscheinung, dass mit zunehmender Schubschlankheit der Abtrag von Querkräften über eine direkte Druckstrebe von der ausgeprägten Biegerissbildung unterbrochen wird. Daher führte in den Modellberechnungen die Bildung von Schrägrissen zu einem signifikanten Lastabfall, welcher nicht mehr kompensiert werden konnte. Wie man anhand der Rissbilder auch erkennen kann, bleibt bei den numerischen Simulationen stets eine Druckzone übrig, was jedoch den Versuchsbeobachtungen widerspricht. Im Speziellen bei Versuchen an schubschlanken Balken ohne Schubbewehrung ist das Versagen dadurch gekennzeichnet, dass der

AISIFIIINIAIG bm

kritische Schubriss ohne Vorankündigung in Richtung Lasteinleitungsstelle in die Druckzone eindringt (siehe Abbildung 2.3).

Inwieweit das Modell SBETA auch imstande ist, dass Verformungsvermögen richtig wiederzugeben, kann leider keine Aussage getätigt werden, da im Versuchsbericht nicht die vollständigen Last-Verformung – Beziehungen angegeben wurden.

Dieser Benchmark-Test konnte zeigen, dass mit Hilfe des gewählten konstitutiven Materialmodelles SBETA für diese Versuchsreihe zumindest für schubschlanke Bauteile sehr gute Übereinstimmungen mit den experimentell ermittelten Querkraftwiderständen erzielt werden konnten. Der beachtliche Maßstabseinfluss, welcher gerade für Bauteile ohne Querkraftbewehrung sehr ins Gewicht fällt, kann wie in [2] gezeigt, dazu führen, dass die numerischen Berechnungen mit dem Modell SBETA deutliche Abweichungen zu Versuchsergebnissen liefern kann. Nichtsdestotrotz wird für die weitere Simulation am konstitutiven Modell SBETA festgehalten, auf Veränderungen der Bauteilhöhe h wird jedoch verzichtet.

6.3.1 Parameterstudie an Einfeldbalken

6.3.1.1 Allgemeines

Im Rahmen dieser Parameterstudie wurden zur Erweiterung der Untersuchungen aus Abschnitt 5 bei Bauteilen ohne Schubbewehrung die Einflüsse des Längsbewehrungsgrades p_{I} sowie der Normalspannung infolge Vorspannung σ_{cp} in Abhängigkeit der Schubschlankheit a/d untersucht. Des Weiteren wurden die Einflüsse der Vorspannkraft P, die Anordnung einer zusätzlichen schlaffen Bewehrung A_{s.}, die Neigung des Spannglieds α_p und der Einfluss der Schubschlankheit a/d bei Balken mit Mindestquerkraftbewehrung asw.min untersucht. Tabelle 6.1 gibt eine Übersicht über die untersuchten Einflussparameter. Eine Variation der geometrischen Abmessungen, der Betondruckfestigkeit fc sowie der Spannstahlmenge A_p fand in den Betrachtungen keine Berücksichtigung und wurde analog zu den Versuchen von Leonhardt und Walther [20] gewählt (siehe Abbildung 6.7). Des Weiteren wurde für die vorgespannten Balken die Fließgrenze des Spannstahl mit f_{pv}=3·f_{sv} angenommen. Die Spannstahlmenge Ap wurde soweit reduziert, so dass die Biegetragfähigkeit M_R in der Größenordnung der schlaff bewehrten Träger lag.

	Untersuchungsparameter	a/d [-]	ρι [%]	σ _{cp} [MPa]	α _p [°]
Bauteile ohne Querkraftbew.	Längsbewehrungsgrad ρ _ι	3,0	0,5	0,0	0,0
			1,0		
			1,5		
			2,0		
		4,0	1,5	0,0	0,0
	Schubschlankheit a/d	2,0	0,0	3,0	0,0
		3,0			
		4,0			
		5,0			
		6,0			
	Schubschlankheit a/d	2,0	0,0	5,0	0,0
		4,0			
		6,0			
Bauteile mit Mindestquerkraftbew.	Normalspannung infolge Vorspannkraft σ _{cp}	3,0	0,0	1,0	0,0
				2,0	
				3,0	
				4,0	
	Längsbewehrungsgrad ρι	3,0	0,0	3,0	0,0
			0,25		
			0,5		
	Spanngliedneigung α _p	3,0	0,0	3,0	0,0
					1,0
					3,0
					5,0
	Spanngliedneigung α _p	3,0	0,5	2,0	0,0
					1,0
					3,0
					5,0
	Schubschlankheit a/d	2,0	0,5	2,0	0,0
		3,0			
		4,0			
		6,0			

Tabelle 6.1: Übersicht über die untersuchten Versuchsparameter

bm

6.3.1.2 Auswertungen

Bauteile ohne Schubbewehrung

In einem ersten Schritt wurde überprüft inwieweit eine Verringerung des Längsbewehrungsgrades pl Einfluss auf die Querkrafttragfähigkeit nimmt. Die numerischen Simulationen konnten die bereits mehrfach in Versuchen festgestellte Abnahme des Querkraftwiderstandes bei Reduktion der Längsbewehrung bestätigen (siehe Abbildung 6.10 (a)). Wesentlich bei der numerischen Simulation von Stahlbeton- und Spannbetonbauteilen ist die korrekte Abbildung der vorhandenen Schubsteifigkeit. Dies wird im Materialmodell SBETA über einen sogenannten Shear Retention Faktor bewerkstelligt. Im Rahmen dieser Analysen wurde der Ansatz von Kolmar [89] gewählt, bei welchem die Schubsteifigkeit in Abhängigkeit der vorherrschenden Normaldehnung reduziert wird. Im Falle einer Abminderung des Längsbewehrungsgrades pl führt dies zwangsläufig zu einer erhöhten Normaldehnung und somit zu einer veringerten Schubsteifigkeit, welche wiederum verantwortlich für die Höhe des Schubwiderstandes ist. Für einen Längsbewehrungsgrad $p_{\rm l}$ von 0,5% wurde, bereits bevor sich der kritische Schubriss bilden konnte die Biegetragfähigkeit des System erreicht. Wie bereits von Görtz [53] sehr anschaulich dargestellt, spielt die Definition des Shear-Retention Faktors eine wesentliche Rolle in der richtigen Erfassung der Systemsteifigkeit als auch der Bruchlast.

Abbildung 6.10: Last-Verformungskurven von Stahlbetonbalken mit verschiedenen Längsbewehrungsgraden ρ_l

Im Eurocode 2 [108,109,110,111] wurde der Einfluss der Längsbewehrung anhand einer Datenbasis an Querkraftversuchen empirisch ermittelt. Die Schubtragfähigkeit nimmt dabei

bm

Abbildung 6.11: Numerische Simulation von Spannbetonbalken mit verschiedenen Schubschlankheiten und Normalspannungen infolge Vorspannung σ_{cp}: (a) Last-Verformungskurven (b) Schubspannung in Abhängigkeit der Schubschlankheit

Wie in Abschnitt 5.1.1 erläutert und wie auch die Versuche von Leonhardt und Walther [20] zeigten, können bei gedrungenen Bauteilen deutlich höhere Schubtragfähigkeiten erzielt werden. Dies beruht auf der Umlagerungsmöglichkeit nach Eintreten der Schubtrissbildung auf ein sogenanntes Sprengwerk. Das Sprengwerk ist durch einen direkten Lastabtrag über eine Druckstrebe gekennzeichnet und kann sich nur bei auflagernahen Laststellungen ausbilden. Die Grundvoraussetzung für die Ausbildung dieses Tragmechanismus ist, dass der üblicherweise zum Versagen führende Schubriss nicht wie bei schubschlanken Bauteilen die Druckzone total einschnürt. Bei Stahlbetonbalken kann sich bei üblichen Abmessungen und Bewehrungsgraden diese Umlagerung ab einer Schubschlankheit von a/d>

Um dies zu verifizieren wurde der Einfluss der Schubschlankheit a/d bei Spannbetonträger numerisch simuliert. Wie in Abbildung 6.11 (a) ersichtlich zeigt sich zwar eine markantere

(a)

(b)

Abhängigkeit von der Schubschlankheit a/d im Vergleich zu Stahlbetonbauteilen (siehe Abbildung 6.8 (a)). Jedoch lässt sich die These, dass sich das Sprengwerk bei Spannbetonbauteilen auch bei höheren Schubschlankheiten a/d ausbilden kann anhand der in Abbildung 6.11 (b) dargestellten Last-Verformungsbeziehungen nicht bestätigen. Obwohl die Vorspannkraft P die Länge des gerissenen Bereichs stark verkürzt, was bekannt die Ausbildung der direkten Druckstreben begünstigt, (siehe Rissbilder in Abbildung 6.12) konnte das hier verwendete numerische Modell die in Versuchen beobachtete Umlagerung auf das Sprengwerk nicht wiederspiegeln.

Abbildung 6.12: Rissbilder kurz vor Erreichen der Schubrisslast für Balken mit einer Schubschlankheit a/d=3,0 und Normalspannung σ_x : (a) schlaff bewehrt (b) vorgespannt: σ_{cp} =3N/mm²

Bauteile mit Mindestschubbewehrung

Da im Zuge dieses Forschungsvorhabens gerade auf Bauteile mit geringer Schubbewehrung der Fokus gelegt wurde, werden nachfolgend die Einflüsse Vorspannkraft P, Schubschlankheit a/d und zusätzliche Längsbewehrung A_{s,I} bei Spannbetonbauteilen mit nur schwacher Schubbewehrung untersucht. Der Querkraftbewehrungsgrad ρ_w wurde für sämtliche numerische Berechnungen in Anlehnung an den in Eurocode 2 [108,109] und Model Code 2010 [101] festgelegten Mindestquerkraftbewehrungsgrad $\rho_{w,min}$ gewählt. In sämtlichen hier angestellten numerischen Berechnungen an Spannbetonträgern mit geringer Schubbewehrung konnte numerisch eine deutlich höhere aufnehmbare Schubspannung τ_{A-} τ_{ENA} als im Vergleich mit dem Fachwerkmodell nach Eurocode 2 [108,109] $\tau_{Rs,EC2}$ =0,9N/mm² ermittelt werden.

Einfluss der Vorspannkraft:

bm

spanngrade. Wie zu erwarten, steigt mit zunenmender Vorspannkraft P das Rissbiegemoment M_{cr} an. Da unter den hier gewählten geometrischen Bedingungen (Rechtecksquerschnitt) die Hauptzugspannungen σ_1 in Trägermitte die effektive Zugspannung f_{ct,eff} nicht überschreiten, bilden sich auch mit zunehmender Vorspannkraft P keine reinen Schubrisse aus. Anders würde die Situation bei stark profilierten I-Querschnitten mit dünnen Stegen aussehen, bei denen sich es die Schubrisse sogar bereits vor den Biegerissen ausbilden können. Das Versagensbild ist daher bei Spannbetonbauteilen mit geringer Schubbewehrung ohne Zugflansch dem des Biegeschubversagen (siehe Abbildung 2.3) sehr ähnlich. Die Zugkräfte, welche nach Bildung des "kritischen" Schubrisses freiwerden, werden jedoch in diesem Fall auf die Bügelbewehrung umgelagert. Durch die sukzessive Einschnürung der Druckzone findet eine immer größer werdende Schubrotation statt, welche mit einer starken Rissöffnung im kritischen Schubriss verbunden ist. Die Höhe der Normalspannung infolge Vorspannkraft σ_{cp} haben daher einen wesentlichen Einfluss auf die Höhe der Bruchlast (siehe Abbildung 6.13) und das Rissbild (siehe Abbildung 6.14).

Abbildung 6.13: Numerische Simulation von Spannbetonbalken mit Mindestquerkraftbewehrung für verschiedene Vorspannkräfte P mit einer Schubschlankheit a/d=3,0

Die Biegerisslast F_{cr} beim Spannbetonbalken mit σ_{cp} =4N/mm² liegt bereits über der Bruchlast des Trägers mit nur sehr geringer Vorspannkraft P (σ_{cp} =4N/mm²). Die Differenz zwischen Biegerissmoment M_{cr} und Traglasmoment M_u nimmt klarerweise mit zunehmender Vorspannkraft ab. Für das Auftreten eines Biegeschubversagens bedeutet dies jedoch, dass bevor sich ein schubkritisches Rissbild im Schubfeld überhaupt bilden kann, die Biegetragfähigkeit M_u des Systems bereits erreicht ist.

Abbildung 6.14: Rissbilder kurz vor Erreichen der Schubrisslast für Spannbetonbalken mit Mindestquerkraftbewehrung mit einer Schubschlankheit a/d=3,0 und Normalspannung σ_x sowie qualitativer Spannungsverläufe in den Bewehrungen: (a) σ_{cp} =1N/mm² (b) 2N/mm² (c) 3 N/mm² (d) 4N/mm²

Wie man anhand der Abbildung 6.5 erkennen kann, nimmt beim Ansatz von Kolmar [89] die Schubsteifigkeit gerade zu Beginn sehr stark ab. Da bei Balken mit geringer Schubbewehrung die Schubrissbildung auch zu einer starken Dehnungslokalisierung in einem "kritischen" Schubriss führt, nimmt auch bei Balken mit geringer Schubbewehrung die Schubsteifigkeit sehr schnell ab, jedoch nicht in dem Ausmaß wie bei schubbewehrten Bauteilen. Messungen an der Bügelbewehrung bei Versuchen ergeben, dass die Schubrissbildung bei Bauteilen mit nur sehr schwacher Schubbewehrung zu einem schlagartigen Erreichen der Fließgrenze führt. Dies konnte mit dem hier verwendeten verschmierten Rissmodell nicht simuliert werden, da die Rissöffnung im Gegensatz zu den Versuchsbeobachtungen eher kontinuierlich verläuft. Die Höhe der Vorspannkraft nimmt Einfluss auf den vorherrschenden Dehnungszustand und dadurch wiederum auf die Schubsteifigkeit des Systems. Daher konnte in der numerischen Simulation ein deutlicher positiver Effekt

der Höhe der Vorspannkraft auf die Schubtragfähigkeit erkannt werden. Dies steht jedoch im Widerspruch mit den in Abbildung 5.21 (b) dargestellten Versuchsbeobachtung von Moayer und Regan [84]. Die numerischen Ergebnisse sind daher kritisch zu hinterfragen. *Einfluss einer zusätzlichen Längsbewehrung:*

Wie Versuche zeigten, hat die Zuggurtsteifigkeit auch bei Spannbetonbauteilen mit Schubbewehrung einen Einfluss auf die Höhe der Schubtragfähigkeit. Die Erhöhung der Zuggurtsteifigkeit geht einher mit einer Reduktion der Normaldehnung ϵ_1 und führt somit zu einer geringeren Schubsteifigkeit. Bekannterweise hängt auch die Biegesteifigkeit im gerissenen Zustand wesentlich von der Zuggurtsteifigkeit ab, weshalb für höhere Längsbewehrungsgrade ρ_l der Anstieg im Last-Verformungsdiagramm (siehe Abbildung 6.15) deutlich steiler wird. Wie in Abbildung 6.15 ersichtlich, konnten die zwei zuvor genannten Thesen mit den numerischen Simulationen bestätigt werden. Der Einfluss ist jedoch wie bei den Versuchen von Moayer und Regan [84] (siehe Abbildung 5.21 (a)) eher gering. Auch im Rissbild und in den Spannungszuständen im Schubfeld konnten nur geringe Abweichungen erkannt werden (siehe Abbildung 6.16).

Abbildung 6.15: Numerische Simulation von Spannbetonbalken mit Mindestquerkraftbewehrung für verschiedene Längsbewehrungsgrade ρι mit einer Schubschlankheit a/d=3,0

Abbildung 6.16: Rissbilder kurz vor Erreichen der Schubrisslast für Spannbetonbalken mit Mindestquerkraftbewehrung mit einer Schubschlankheit a/d=3,0 und Normalspannung σ_x : (a) ρ_1 =0,25% (b)) ρ_1 =0,50%

<u>Einfluss der Spanngliedneigung α_p:</u>

In Abschnitt 5.2.3.4 wurde der Einfluss der Spanngliedneigung σ_{cp} beleuchtet und gezeigt, dass eine geneigte Spanngliedführung nicht zwangsläufig zu einer Erhöhung der Querkrafttragfähigkeit führen muss [, 79]. Dies wird darauf zurückgeführt, dass aufgrund des höherliegenden Spannglieds die resultierende Druckgurtkraft eine geringere Neigung in Längsrichtung aufweist und daher deren Vertikalkomponente verringert wird. Wie in Abbildung 6.17 gezeigt, führt in dem hier gewählten numerischen Modell eine Variation der Spanngliedneigung α_p tatsächlich zu keiner Erhöhung der Querkrafttragfähigkeit.

Abbildung 6.17: Numerische Simulation von Spannbetonbalken mit Mindestquerkraftbewehrung für verschiedene Spanngliedneigungen α_p mit einer Schubschlankheit a/d=3,0

bm

Wie man aus den Normalspannungsverläufen erkennen kann, führt das Hochziehen der Spannglieder auch in der numerischen Berechnung zu einem deutlich flacheren Druckbogen, welcher sich gegen die Verankerung der Spannglieder abstützt. Die numerischen Berechnungen konnten die von [, 79] aufgestellte Hypothese durchaus bestätigen, eine experimentelle Absicherung wäre jedoch durchaus noch empfehlenswert.

Abbildung 6.18: Rissbilder kurz vor Erreichen der Schubrisslast für Spannbetonbalken mit Mindestquerkraftbewehrung mit einer Schubschlankheit a/d=3,0 und unterschiedlicher Spanngliedlagen am Auflager

Einfluss der Schubschlankheit a/d:

Der Einfluss der Schubschlankheit kann unter der Verwendung praxistauglicher Längsbewehrungsgehalte nur für auflagernahe Lasten untersucht werden, da aufgrund der Schubbewehrung eine deutliche Laststeigerung über die Schubrisslast hinaus möglich ist und daher bereits ab einer Schubschlankheit a/d=3 ein vorzeitiges Biegeversagen eintritt. Daher lässt sich der Einfluss der Laststellung nicht für eine so große Bandbreite wie bei Bauteilen ohne Schubbewehrung untersuchen. Abbildung 6.19 zeigt, dass für eine Schubschlankheit a/d=2,0 nach Erreichen der Fließgrenze der Bügelbewehrung noch eine weitere Laststeigerung möglich, welche sich mit der Umlagerung auf ein Sprengwerk erklären lässt. Ähnlich wie bei den Spannbetonbalken ohne Schubbewehrung kann sich dieses Tragverhalten jedoch bereits ab einer Entfernung der Last von 3d vom Auflager nicht mehr einstellen.

bm

Abbildung 6.19: Numerische Simulation von Spannbetonbalken mit Mindestquerkraftbewehrung für verschiedene Schubschlankheiten a/d

6.3.1.3 Erkenntnisse

Ausgehend von den bekannten Versuchen von Leonhardt und Walther [20] wurden die in Kapitel 5 untersuchten Einflussparameter anhand einer Parameterstudie numerisch analysiert. Die auf Basis der nichtlinearen Finite Elemente Methoden durchgeführten Berechnungen konnten die in den Versuchen beobachteten Einflussparameter nur zum Teil wiederspiegeln. So zeigte zum Beispiel sich ein signifikanter Einfluss der Vorspannkraft bei Bauteilen mit Mindestschubbewehrung, welcher in dieser Größenordnung in Versuchen nicht beobachtet werden konnte. Darüber hinaus konnte sich der Umlagerungseffekt auf ein Sprengwerk bei Spannbetonbalken ohne Querkraftbewehrung nicht wie erwartet auch bei höheren Schubschlankheiten a/d ausbilden.

Die Beobachtung, dass die Neigung der Spannglieder α_p einen wesentlichen Einfluss auf die Ausbildung eines Druckbogens hat, konnte jedoch bestätigt werden.

Die Ergebnisse der numerischen Simulation (Bruchlast, Rissbildung) hängen gerade für Bauteile ohne und mit nur sehr geringer Querkraftbewehrung sehr stark von der Reduktion der Schubsteifigkeit (Shear Retention Faktor) bei beginnender Schubrissbildung ab. Ob der hier gewählte Ansatz von Kolmar [89] für die gesamte Parameterstudie die richtige Abbildung der Schubsteifigkeit darstellt, ist kritisch zu hinterfragen. Die im Zuge dieses Forschungsvorhabens angestellten numerischen Berechnungen können nur einen Anhaltspunkt liefern und niemals die Erkenntnisse aus experimentellen Untersuchungen ersetzen. Die Versuchsdaten aus Kapitel 3 sind somit den numerischen Ergebnissen vorzuziehen.

bm

7 MODELLBILDUNG

7.1 Allgemeines

Im Zuge dieses Kapitels soll die Entwicklung eines neuartigen Querkraftmodells beschrieben werden. Mit dem neuen Berechnungsmodell soll es ermöglicht werden, die in Abschnitt 3.3 gesammelten experimentellen Bruchlasten angemessen zu bestimmen. Wie in Abschnitt 5.1.1 erläutert kann bei gedrungenen Bauteilen auch nach der Schubrissbildung eine zum Teil beträchtliche Laststeigerung erzielt werden, was auf die Umlagerungsmöglichkeit auf ein sogenanntes Sprengwerk bzw. eine Bogentragwirkung zurückzuführen ist. Dieser Mechanismus kann sich jedoch bei höheren Schubschlankheiten a/d bzw. Schlankheiten I/d nicht mehr ausbilden. Bei auflagernahen Laststellungen bzw. bei geringen Schlankheiten bildet sich außerdem meist ein anderer Versagensmechanismus aus (Versagen des Sprengwerks), weshalb für die Beschreibung von gedrungenen und schubschlanken bzw. schlanken Bauteilen streng genommen zwei unterschiedliche Modellansätze von Nöten sind. Da im Brückenbau neben den permanent wirkenden Lasten ein erheblicher Anteil der Querkraft aus wandernden Verkehrslasten resultiert, wird im Rahmen dieser Modellentwicklung der Fokus auf das Querkrafttragverhalten von schubschlanken bzw. schlanken Bauteilen gelegt.

7.2 Querkrafttragfähigkeit von Stahlbetonbauteilen ohne Schubbewehrung

Die Schubtragfähigkeit von Bauteilen ohne Querkraftbewehrung wird im Wesentlichen von drei Tragmechanismen bestimmt (siehe Abschnitt 2.3.1):

- Dübelwirkung der Längsbewehrung
- Rissverzahnung/Rissreibung
- Querkraftabtrag der ungerissenen Druckzone

Über deren Existenz herrscht unter Forschern weitgehend Einigkeit, während deren prozentueller Anteil am Querkraftabtrag äußerst kontrovers diskutiert wird. Darüber hinaus ist es von großer Bedeutung, welche Tragmechanismen bei Versagensbeginn noch wirken. Nachfolgend sollen dazu, einige Erläuterungen getätigt werden:

Durch gezielten Ausschluss der Traganteile der ungerissenen Druckzone und der Rissverzahnung konnte experimentell gezeigt werden (siehe Abschnitt 2.3.1.2), dass die Dübelwirkung einen Traganteil liefern kann (z.B.: [12]). Die Dübelwirkung wird ähnlich wie die Rissverzahnung aktiviert, wenn sich die Rissufer gegeneinander verschieben. Baumann und Rüsch [12] formulierten auf Basis ihrer Versuche eine Gleichung (Gl. 2.6), mit welcher in

Abhängigkeit der Nettobreite b_n , der Betondruckfestigkeit f_c sowie des Stabdurchmessers d_s die Bestimmung der maximalen Querkrafttragfähigkeit der Dübelwirkung für einlagige Bewehrung möglich ist. Streng genommen, müsste die Dübelwirkung jedoch gemäß einer Last-Rissgleitungsbeziehung definiert werden, was sich nicht nur als äußerst schwierig erweist, sondern auch für eine einfache und praxistaugliche Vorgehensweise nicht als sinnvoll darstellt. Eine Anwendung von Gleichung 2.6 auf die Versuchsbasis (siehe Abschnitt 3.3) an Bauteilen ohne Schubbewehrung mit einlagiger Bewehrung ergibt, dass im Mittel die Dübeltragfähigkeit nur in etwa 20 Prozent von der gesamten Querkrafttragfähigkeit beträgt. Darüber hinaus muss in Frage gestellt werden, inwieweit diese experimentelle Dübelkraft bei Erreichen der Bruchlast eines Bauteiles ohne Schubbewehrung bereits vorhanden ist, da sich die sogenannten "Dübelrisse" meist erst nach Überschreitung der Maximallast bilden. Die Tragfähigkeit der Dübelwirkung wird daher für das im Zuge dieses Forschungsvorhabens zu entwickelnde Modell nicht berücksichtigt.

In den neueren Querkraftmodellen wird dem Ausfall der Rissverzahnung die Ursache für das Eintreten des Schubversagens zugesprochen (siehe Abschnitt 2.3.3). Die Rissverzahnung stellt jedoch einen äußerst komplexen Tragmechanismus dar, welcher sich nur sehr schwer mechanisch sauber beschreiben lässt. Das Tragverhalten der Rissverzahnung wird an sogenannten "Push-Off" Versuchen experimentell bestimmt. Die in den Rissen übertragbaren Spannungen hängen dabei im Wesentlichen von der vorherrschenden Rissöffnung w, Rissgleitung s, der Festigkeit der Gesteinskörnung bzw. der Zementmatrix und der Kornzusammensetzung ab. Gerade die Beschreibung der vorhandenen Rissöffnung w und der Rissgleitung s zu einem bestimmten Lastzeitpunkt erweist sich dabei als guasi nicht bewältigbar. Wie aktuelle eigene Messungen zur Risskinematik zeigen [91], kommt es in den Schubfeldern nach einer anfänglichen Rissöffnung w bei Laststeigerung auch zu einer deutlichen gegenseitigen Verschiebung s der Rissufer, wodurch ein Teil der Querkraft in den unteren Laststufen mit Sicherheit über die Risse hinweg übertragen werden kann. Bei Anwendung der verschiedenen aus "Push-Off" Versuchen abgeleiteten mathematischen Formulierungen [3,4,101] zur Beschreibung der übertragbaren Spannungen im Riss in Abhängigkeit der Rissöffnung und -gleitung zeigte sich eine deutliche Bandbreite in den diversen Ansätzen. Es muss auch in Frage gestellt, inwieweit die Push-Off Versuche, die in den Schubrissen übertragenen Spannungen richtig wiederspiegeln können.

7.2.1 Ansatz auf Basis der Querkrafttragfähigkeit der Druckzone

Im Bruchzustand findet bei Öffnung des "kritischen" Schubrisses eine Umlagerung der im Riss übertragenen Spannungen in die Druckzone statt. Die ungerissene Druckzone übernimmt daher im Bruchzustand den maßgebenden Anteil der Querkraft. Aufgrund der gemeinsamen Wirkung von Biegemoment und Querkraft herrscht in der Druckzone eine Normalspannungsbeanspruchung σ_x - und Schubspannungsbeanspruchung τ_{xz} . Die Schubspannung entspricht bekanntlich keiner tatsächlichen auftretenden Spannung, sondern dient ausschließlich als Rechenwert. Die kombinierte Beanspruchung erzeugt somit in der Druckzone einen zweiachsialen Spannungszustand, welcher aus einer Hauptdruck- σ_1 und einer Hauptzugspannung σ_2 besteht. Die Schubtragfähigkeit von Bauteilen ohne Querkraftbewehrung wird daher maßgebend vom vorherrschenden Spannungszustand in der Druckzone bestimmt (siehe Abbildung 7.1).

Abbildung 7.1: Hauptspannungen in der Druckzone

Ob ein bestimmter Spannungszustand nun zum Versagen führt, wird durch die Kombination der einzelnen Spannungskomponenten σ_1 , σ_2 bestimmt. Im allgemeinen Fall wird ein Spannungszustand mit einem Grenzspannungszustand, der gleichbedeutend mit dem Versagenszustand ist, verglichen:

$$f_{c,eff} \propto \sigma_1 \wedge \sigma_2$$

$$f_{c_1,eff} \propto \sigma_1 \wedge \sigma_2$$
(7.1)

Dabei wird der Grenzspannungszustand durch Bruchhypothesen definiert, auf welche später noch ein besonderer Fokus gelegt wird. Der gewählte Ansatz zur Bestimmung der Querkrafttragfähigkeit lautet somit:

$$\frac{V_R}{b \cdot c} = \begin{cases} f_{ct,eff} \\ f_{c,eff} \end{cases}$$
(7.2)

mit

cDruckzonenhöhe $f_{c,eff}, f_{ct,eff}$ Materialfestigkeit in Abhängigkeit der Hauptspannung $\sigma_{1,} \sigma_{2}$

bm

$$c = \frac{\alpha_s \cdot A_{s,l}}{b} \cdot \left(\sqrt{1 + \frac{2 \cdot b \cdot d}{\alpha_s \cdot A_{s,l}}} - 1 \right)$$
(7.3)

mit

 A_{sl}

$$\alpha_s = \frac{E_s}{E_c}$$
 Verhältnis des Elastizitätsmoduls von Betonstahl zu Beton
$$E_c = 22000 \cdot \left(\frac{f_c}{10}\right)^{0.3}$$
 gemäß ÖNORM EN 1992-1-1 [108]

Gleichung 7.3 kann nur bei Biegung ohne Normalkraft angewendet werden, da in diesem Fall die Dehnungsnulllinie mit der Schwerpunktslinie des gerissenen Querschnitts zusammenfällt und somit die Druckzonenhöhe unabhängig von der Belastung bestimmt werden kann. Die Höhe der Druckzone hängt dann nur mehr vom Verhältnis der E-Moduli α_s der verwendeten Materialien, der Bewehrungsmenge ρ und von den geometrischen Abmessungen ab. Die Annahme von linear elastischen Materialverhalten des Betons in der Druckzone scheint ebenso gerechtfertigt, da bei einem Querkraftversagen die Längsbewehrung im Regelfall noch nicht die Fließgrenze f_{sv} erreicht hat.

voll verankerte Zugbewehrung im Nachweisschnitt

Abbildung 7.2: Schubfeldmodell - Annahmen

Ein besonderes Augenmerk muss auf die Verteilung der Spannungen über die Druckzone gelegt werden. Die Betondruckspannungen sind aufgrund der zuvor getroffenen Annahmen linear über die Druckzone verteilt (siehe Abbildung 7.2). Beim Verlauf der Schubspannungen hängt der Verlauf vom betrachteten Querschnitt ab. Wir betrachten zuerst eine infinitesimale Länge Δx direkt in einem Biegeriss. Da im Riss kein Verbund zum umliegenden Beton herrscht, können sich über Δx keine Verbundspannungen aufbauen, weshalb die Kraft in der Bewehrung F_s konstant bleibt. Dies bedeutet, um horizontales Gleichgewicht zu gewährleisten, sind auch die Betondruckkräfte an beiden Seiten des Freikörpers gleich groß. Um nun auch noch Momentengleichgewicht gewährleisten zu können, müssen die

bm

$$\tau_{xz,\max,riss} = \frac{3}{2} \cdot \frac{V}{b \cdot c}$$
(7.4)

Zwischen den Rissen kann durch den intakten Verbund die Zugspannung in der Bewehrung wieder auf den Beton übertragen werden, wodurch eine Änderung in der Längszugkraft ΔF_s hervorgerufen wird. Um horizontales Gleichgewicht einzuhalten, führt dies zwangsläufig auch zu einer Erhöhung der Betondruckkraft ΔF_c in der Druckzone. Die daraus resultierende Normalspannungsdifferenz über die Länge Δx führt zu den in Abbildung 7.3 (b) bekannten Schubspannungsverlauf, welcher bereits von Mörsch [29] zu Beginn des 20. Jahrhundert hergeleitet wurde und die Schubbemessung von Bauteilen ohne Querkraftbewehrung viele Jahre prägte:

$$\tau_{xz,\max,verbund} = \frac{V}{b \cdot z}$$
(7.5)

Da die Berechnung der Schubtragfähigkeit im Riss erfolgt, wird der in Abbildung 7.3 (a) gezeigte parabelförmige Schubspannungsverlauf für die weiteren Modellierungen in Betracht gezogen.

Durch die Kombination der Normalspannung σ_x und der Schubspannung τ_{xz} entsteht ein zweiachsialer Spannungszustand in der Druckzone, welcher sich aus einer Hauptdruckspannung σ_2 und einer Hauptzugspannung σ_1 zusammensetzt. Im nachfolgenden wird die Definition eines Versagenskriterums für den Druck-Zug Bereich in der Druckzone erör-

bm

Abbildung 7.4: Vergleich verschiedener Bruchhypothesen für den Druck-Zug Bereich mit Versuchsergebnissen

Zur Beurteilung der biachsialen Festigkeit stehen verschiedene Bruchhypothesen zur Verfügung (siehe Abbildung 7.4). Das einfachste Bruchkriterium stellt die Versagenshypothese nach Rankine dar, bei welcher unabhängig von der Querdruckbeanspruchung stets die volle Zugfestigkeit f_{ct} angesetzt werden darf. Wie man anhand des Vergleiches mit Versuchsergebnissen an Scheibenversuchen unter Druck- und Zugbeanspruchung jedoch deutlich erkennen kann, liefert die Vernachlässigung der Querdruckempfindlichkeit eine signifikante Überschätzung der Materialfestigkeit. Deutlich realistischer kann die biachsiale Grenzspannung mit Hilfe des aus der Bodenmechanik bekannten Mohr-Coulomb'schen Bruchkriteriums beschrieben werden. Die Zugfestigkeit nimmt dabei linear in Abhängigkeit der Hauptdruckspannung σ_2 ab. Wie man jedoch an Abbildung 7.4 erkennen kann, hängt die biachsiale Zugfestigkeit nicht nur von der vorhandenen Druckspannung, sondern auch wesentlich von der verwendeten Betongüte ab. Daher stellte Kupfer [39,88] jeweils eine Gleichung für Normalbeton und hochfesten Beton auf.

Aufgrund der unzureichenden Beschreibung der biachsialen Festigkeit der Versuchdaten mit den gängigen Bruchkriterien wird nachfolgend die Entwicklung einer eigenen Bruchhypothese vorgestellt.

Für die Bestimmung der biachsialen Festigkeit exisitiert kein standardisiertes Prüfverfahren. Die Druck-Zug Versuche werden im Allgemeinen an Hohlzylindern oder an Scheiben durchgeführt. Für die hier durchgeführten Untersuchungen werden ausschließlich Versuche an

Scheiben verwendet [88, 93, 94]. Es muss jedoch an dieser Stelle festgestellt werden, dass die Ergebnisse bei Druck-Zug Versuchen einer relativ großen Streuung unterliegen. Dennoch lässt sich innerhalb der einzelnen Serien der Trend erkennen, dass mit zunehmender Betondruckfestigkeit f_c die Empfindlichkeit gegenüber Querdruckbeanspruchung deutlich zunimmt. Darüber hinaus nimmt die Zugfestigkeit f_{ct} bei hochfesten Betonen bereits bei sehr geringen Druckspannungen bereits erheblich ab (siehe Abbildung 7.5). Details zu den einzelnen Druck-Zug Versuchen können Anhang C entnommen werden.

bm

Abbildung 7.5: Druck-Zug Festigkeit von Beton

Die experimentell ermittelte Abminderung der Zugfestigkeit f_{ct} aufgrund der Querdruckbeanspruchung lässt sich für sämtliche in den Versuchsreihen getesteten Betongüten mit einem linearen Zusammenhang ausreichend genau beschreiben. Um den Einfluss der Druckfestigkeit f_c auf die biachsiale Festigkeit mit zu berücksichtigen, wird ein zusätzlicher Term eingeführt, welcher den linearen Verlauf in Abhängigkeit der Betongüte im Druck-Zug Bereich verschiebt. Der Abhängigkeit von der Betongüte folgt jedoch keiner linearen Relation, sondern konvergiert für hochfeste Betone gegen eine bestimmte Grenzspannung (siehe Abbildung 7.5). Deshalb wird für den Einfluss der Betondruckfestigkeit eine Potenzfunktion gewählt. Somit ergibt sich die hier entwickelte Bruchhypothese für den Druck-Zug Bereich zu

$$\frac{\sigma_1}{f_{ct}} = 1, 6 - 0, 2 \cdot f_c^{\frac{1}{3}} + 0, 6 \cdot \frac{\sigma_2}{f_c}$$
(7.6)

Gleichung 7.6 liefert jedoch für ein geringes bzw. großes Verhältnis σ_2/f_c von Hauptdruckspannung zu Betondruckfestigkeit Ergebnisse, welche physikalisch nicht plausibel

sind. Die Bruchhypothese überschätzt die effektive Festigkeit für sehr geringe Betondruckfestigkeit bzw. unterschätzt diese für ultrahochfesten Beton. Deshalb musste für die Gleichung 7.6 folgender Anwendungsbereich definiert werden (siehe Abbildung 7.6 (a)):

$$-0.9 \le \frac{\sigma_2}{f_c} \le -0.1 \tag{7.7}$$

Darüber hinaus sollte in Gleichung 7.6 für Betondruckfestigkeiten nicht kleiner als 20 N/mm² bzw. größer als 100 N/mm² angenommen werden. Die Notwendigkeit eines Definitionsbereiches kann durch die einfache Formulierung gerechtfertigt werden. Der Verzicht des Definitionsbereiches würde eine deutlich komplexere Gleichung mit sich bringen, welche den Formelapparat des hier entwickelten Schubmodells unnötige verkomplizieren würde.

Abbildung 7.6: Neu entwickelte Bruchhypothese für den Druck-Zug Bereich: (a) Geltungsbereich (b) Vergleich mit Versuchsergebnissen

Ein Vergleich mit den wenigen verfügbaren Versuchen (siehe Anhang C) zur Bestimmung der effektiven Festigkeiten $f_{c,eff}$ bzw. $f_{ct,eff}$ im Druck-Zug Bereich (siehe Abbildung 7.6 (a)) mit dem Bruchkriterium aus Gleichung 7.6 zeigt eine passable Übereinstimmung, wenn man bedenkt, dass die Ergebnisse der Druck-Zug Versuche einer relativ großen Streuung unterliegen.

Die Schubtragfähigkeit von Bauteilen ohne Querkraftbewehrung wird maßgebend von der Zugfestigkeit f_{ct} des Betons beeinflusst. Die Bestimmung der tatsächlichen einachsialen Zugfestigkeit f_{ct} kann nur mit zentrischen Zugversuchen direkt bestimmt werden. Aufgrund der aufwändigen Versuchsdurchführung wird die Zugfestigkeit sehr oft indirekt mit Spaltzugoder Biegezugversuchen gemessen und daraus auf die zentrische Zugfestigkeit f_{ct} rückgerechnet. In der Praxis wird in der Regel nur die Konformität der Druckfestigkeit f_c überprüft, auf eine Bestimmung der Zugfestigkeit f_{ct} wird verzichtet. In der Literatur und in den Normen

existieren daher verschiedene Ansätze, mit welcher die Zugfestigkeit f_{ct} in Abhängigkeit der Druckfestigkeit f_c des Betons ermittelt werden kann (siehe Gleichungen in Abbildung 7.7). Abbildung 7.7 zeigt einen Vergleich der experimentell ermittelten Zugfestigkeiten f_{ct} , welche im Rahmen der Querkraftversuche aus der in Abschnitt 3.3 erstellen Datenbank durchgeführt wurden, mit verschiedenen Ansätzen zur Bestimmung der Zugfestigkeit f_{ct} . Die zentrische Zugfestigkeit f_{ct} weist eine im Vergleich zur Druckfestigkeit f_c deutliche höhere Streuungen auf. Dennoch lässt sich die Zugfestigkeit f_{ct} mit Hilfe des logarithmischen Ansatzes von Remmel [30] (siehe Gleichung 7.8), welcher auch im Eurocode 2 [108] für hochfeste Betone angeführt ist, ausreichend genau beschreiben und wird daher für die weiteren Ausführungen verwendet.

bm

$$f_{ct} = 2,12 \cdot \ln\left(1 + \frac{f_c}{10}\right)$$
(7.8)
$$f_{ct} = 2,12 \cdot \ln\left(1 + \frac{f_c}{10}\right)$$

$$f_{ct} = \frac{1}{10} + \frac{1}$$

Abbildung 7.7: Ansätze für die einachsiale Betonzugfestigkeit f_{ct} im Vergleich mit Zugversuchen aus der Querkraftdatenbank

Eine Überlagerung der Normalspannung σ_x infolge Biegung in Kombination mit der resultierenden Schubspannung τ_{xz} aus Querkraft (siehe Abbildung 7.1) erzeugt in der Druckzone einen biachsialen Spannungszustand, welcher bei Erreichen des Bruchkriteriums aus Gleichung 7.6 zum Versagen der Druckzone führt und somit das Biegeschubversgen einleitet. Die Hauptzug- und Hauptdruckspannungen σ_1 , σ_2 , können mit Hilfe der bekannten Gleichung 2.1 ermittelt werden. Eleganter als der Nachweis mit den Hauptspannungen ist das Einsetzen der Hauptspannungen (Gleichung 2.1) in die Bruchhypothese (Gleichung 7.6) und umformen auf eine maximal zulässige Schubspannung $\tau_{xz,max}$.

bm

$$\tau_{xz,\max} = \sqrt{\left(\frac{1,6 \cdot f_{ct} - 0,2 \cdot f_c^{\frac{1}{3}} \cdot f_{ct} - \frac{\sigma_x}{2} \cdot \left(1 - 0,6 \cdot \frac{f_{ct}}{f_c}\right)}{1 + 0,6 \cdot \frac{f_{ct}}{f_c}}\right)^2 - \frac{\sigma_x^2}{4}}$$
(7.9)

Wie in Abschnitt 2.3.2.1 bereits erläutert wurde, nimmt die aufnehmbare Schubspannung mit zunehmender Bauteilhöhe ab (siehe Abbildung 2.8). Walraven [73] wies in diesen Zusammenhang darauf hin, dass offensichtlich ein Zusammenhang zwischen Rissfortschritt und Bauteilhöhe besteht. Dies konnte auch im Zuge der in [91] durchgeführten Versuchsreihe beobachtet werden (siehe Abbildung 7.8). Während der Versuchsträger mit einer Querschnittshöhe von h=1,00m bei einer Schubspannung von τ =0,54 N/mm² bereits ein beinahe abgeschlossenes Rissbild aufweist, beginnt bei den kleinen Balken gerade erst die Biegerissbildung. Da eine fortgeschrittene Biegerissbildung jedoch eine Grundvoraussetzung für ein Biegeschubversagen darstellt, lässt sich eine Erklärung des Maßstabseinflusses in der Energiefreisetzungsrate finden, welche bei größeren Bauteilen deutlich höher ist. Deshalb greifen Bažant et al. [23] zur Beschreibung des Maßstabseinflusses auf die nichtlineare Bruchmechanik zurück. Bis jetzt lässt sich der Einfluss der Bauteilhöhe nur empirisch beschreiben und muss für den jeweiligen Modellansatz neu kalibriert werden. Der Einfluss der Bauteilhöhe wird daher durch eine Modifikation der maximalen Schubspannung $\tau_{xz,max}$ aus Gleichung 7.9 mit folgenden Faktor bewerkstelligt

Abbildung 7.8: Entwicklung des Rissbildes von schubschlanken Balken mit unterschiedlichen Querschnittshöhen für verschiedene bezogene Schubspannungen τ=Q/bd – Bauteilhöhe für Vergleichszwecke skaliert (entnommen aus [91])

Unter der Annahme des in Abbildung 7.3 (a) dargestellten Schubspannungsverlaufes ergibt sich somit die Querkrafttragfähigkeit von Bauteilen ohne Schubbewehrung zu

$$V_{R,c} = \frac{2}{3} \cdot b \cdot c \cdot k_h \cdot \tau_{xz,\max}$$
(7.11)

Die Querkrafttragfähigkeit gemäß Gleichung 7.11 berücksichtigt die Momenten-Querkraft Interaktion, weshalb es notwendig ist, einen Nachweisschnitt zu definieren. Bei genauerer Betrachtung der Gleichung 7.9 erkennt man, dass mit zunehmender Normalspannung σ_x die maximale aufnehmbare Schubspannung $\tau_{xz,max}$ zunimmt. In Hauptspannungen ausgedrückt bedeutet dies, dass mit ansteigender Normalspannung σ_x der Hauptspannungszustand in der Regel günstiger wird und sich dadurch die rechnerische Querkrafttragfähigkeit erhöht. Da die Annahme getroffen wurde, dass die Druckzonenhöhe c gemäß Gleichung 7.3 für Bauteile ohne Normalkraft belastungsunabhängig und somit konstant über das gesamte Schubfeld ist, resultiert daraus, dass die Querkrafttragfähigkeit mit zunehmenden Biegemoment ansteigt. Im Fall des Einfeldbalken mit punktueller Belastung würde dies bedeuten, dass die maximale Schubtragfähigkeit direkt unterhalb der Lasteinleitung auftritt und dass Minimum in der Auflagerachse. Dazu müssen jedoch folgende Details beachtet werden:

- Ein Bereich neben dem Auflager bleibt meist ungerissen und ist daher nicht schubbruchgefährdet. Gleichung 7.11 lässt sich in diesem Bereich nicht anwenden.
- Die Auswertung von Rissbildern (siehe Abbildung 7.9), der schon mehrmals erwähnten Versuchsserie von Leonhardt und Walther [20] zeigt für große Schubschlankheiten a/d eine Abnahme der Druckzonenhöhe c im Schubfeld. Dies kann auf die geringere Momentenbeanspruchung in Richtung Auflager und die dadurch begünstigte Mitwirkung des Betons in der Zugzone erklärt werden. Eine größere Druckzonenhöhe c wirkt sich demnach günstig auf die Schubtragfähigkeit gemäß Gleichung 7.11 aus.
- In Bereichen geringerer Momentenbeanspruchung weisen die Biegerisse kleinere Rissweiten auf, was sich wiederum günstig auf die Rissverzahnung auswirkt. Gleichung 7.11 geht jedoch davon aus, dass die Rissverzahnung bereits ausgefallen ist und unterschätzt in diesen Bereichen daher die Querkrafttragfähigkeit.

bm

Abbildung 7.9: Rissbilder von Versuchen von Leonhardt und Walther [20] an Bauteilen ohne Schubbewehrung und großer Schubschlankheit a/d – Abhängigkeit der Druckzonenhöhe c von der Lage im Schubfeld

Aufgrund der Sensitivität des Spannungszustandes und der Druckzonenhöhe auf die Schubschlankheit a/d bzw. Schlankheit I/d wird der Kontrollschnitt x_{krit} für ausschließlich punktuell belastete Bauteile in folgender Entfernung vom Auflager definiert

$$x_{krit} = 8 \cdot \frac{d^2}{a} \le a \text{ für } a / d > 3,0$$
 (7.12)

bzw. bei gleichmäßiger Belastung ergibt sich der Nachweisschnitt zu

$$x_{krit} = 2 \cdot d$$

$$(7.13)$$

Abbildung 7.10: Lage des kritischen Schubrisses im Schubfeld anhand von Rissbildern aus Versuchen von Leonhardt und Walther [20] an Bauteilen ohne Schubbewehrung mit verschiedenen Schubschlankheiten a/d bzw. Schlankheiten I/d

Wie man an Gleichung 7.12 erkennen kann, wandert somit der Kontrollschnitt mit zunehmender Schubschlankheit a/d in Richtung Auflager. Dieses Phänomen konnte auch in der Versuchsreihe von Leonhardt und Walther [20] beobachtet werden (siehe Abbildung 7.10), jedoch nicht in dem Ausmaß wie er sich aus Gleichung 7.12 ergibt. Da man jedoch, um das

Modell so einfach wie möglich zu halten, auf eine von der Schubschlankheit a/d unabhängige Druckzonenhöhe c im gesamten Schubfeld zurückgegriffen hat, ergeben sich dadurch gewisse Abweichungen zwischen Bemessungsschnitt und Versagensort. Dies ist jedoch nicht weiter problematisch, da bei praxisbezogenen Längsbewehrungsgraden p_l die Schubbruchgefährdung bei höheren Schubschlankheiten a/d erst gar nicht gegeben ist, da vorher bereits die Biegetragfähigkeit M_R erreicht wird. Dies belegt auch das aus Versuchen abgeleitete "Schubtal von Kani" [95] aus Abbildung 7.11, wonach die schubkritischen Laststellungen mit abnehmenden Bewehrungsgrad ρ_l reduziert werden.

Abbildung 7.11: Schubtal nach "Kani" – Darstellung der Schubbruchgefährdung in Abhängigkeit der Schubschlankheit a/d und des Längsbewehrungsgrades p_l (entnommen aus [95])

Bei der experimentellen Untersuchung des Querkraftwiderstandes von Bauteilen ohne Schubbewehrung für größere Schubschlankheiten a/d wird meist ein sehr hoher Längsbewehrungsgrad ρ_l gewählt, um ein Biegeversagen mit Sicherheit ausschließen zu können. Für die Praxis sind solch hohe Bewehrungsgrade ρ_l jedoch unüblich.

7.2.2 Vergleich mit Versuchsergebnissen

Der in Abschnitt 7.2.1 hergeleitete Ansatz zur Bestimmung der Querkrafttragfähigkeit soll nun anhand der in Abschnitt 3.3 erstellten Datenbank an Querkraftversuchen mit Bauteilen ohne Schubbewehrung unter punktueller und gleichmäßiger Belastung verglichen werden. Dabei wurden alle Versuchsträger mit einer Schubschlankheit von a/d>3,0 bzw. Schlankheit von l/d>7,0 in die Gegenüberstellung miteinbezogen. Da der Querkraftwiderstand von der M-V Interaktion beeinflusst wird, muss für die Versuchsnachrechnungen eine iterative Berechnung durchgeführt werden.

Abbildung 7.12 zeigt einen Vergleich der nach Gleichung 7.11 rechnerischen Schubspannung $\tau_{R,c}$ mit den experimentellen Schubspannungen τ_{Exp} . sowie die wesentlichsten statistischen Kenngrößen. Mit dem im Zuge dieses Forschungsvorhabens entwickelten Ansatz konnte den Großteil der experimentellen Schubrisslasten ziemlich genau vorhergesagt werden.

Bei gleichförmiger Belastung konnte eine sehr gute Übereinstimmung mit den Versuchsdaten erzielt werden. Es muss jedoch klar festgehalten werden, dass die Datenbasis eindeutig zu klein ist, um eine verlässliche Aussage über die Qualität des Ansatzes bei gleichförmiger Belastung zu treffen (siehe Abbildung 7.12 (b)).

Abbildung 7.12: Vergleich von Gleichung 7.11 mit Versuchsergebnissen: (a) mit Punktlast (b) mit Gleichlast

Die wesentlichsten Einflussparameter für die rechnerische Querkrafttragfähigkeit sind:

- Längsbewehrungsgrad ρ_ι
- Schubschlankheit a/d bzw. Schlankheit I/d
- Statische Höhe d
- Betongüte (Druckfestigkeit fc bzw. Zugfestigkeit fct)
- Größtkorndurchmesser dg

In Abbildung 7.13 (b) bis (g) wird die Übereinstimmung der einzelnen Parameter durch das Verhältnis der experimentellen zur rechnerischen Schubtragfähigkeit $V_{Exp}/V_{R,c}$ in Abhängigkeit des jeweiligen Einflusses dargestellt. Aufgrund der begrenzten Anzahl an Versuchen mit gleichmäßiger Belastung wird lediglich der Einfluss der Schubschlankheit I/d ausgewertet.

Mit dem neu entwickelten Ansatz konnte über die gesamte untersuchte Bandbreite ein ausgewogenes Verhältnis erzielt werden, was auf die richtige Erfassung der Einflussparameter schließen lässt.

Abbildung 7.13: Vergleich von Gleichung 7.11 mit experimentellen Bruchlasten für verschiedene Einflussparameter: (a) Geometrie Versuchsträger und Belastung (b) statische Höhe d (c) Betondruckfestigkeit f_c (d) Schubschlankheit a/d (e) Längsbewehrungsgrad ρ_l (f) Größtkorndurchmeser d_g (g) Schlankheit I/d

7.2.3 Auswirkungen auf eine Bemessung

7.2.3.1 Vorgehensweise

Die Höhe der Querkrafttragfähigkeit hängt sowohl von der Querkraft als auch vom einwirkenden Biegemoment ab. Bei Versuchen mit Einzellast und Gleichlast kann das Biegemoment stets in Abhängigkeit der Querkraft formuliert werden, weshalb die zweiachsiale Bruchhypothese in eine maximal aufnehmbare Schubspannung $\tau_{xz,max}$ und in weiterer Folge als maximale aufnehmbare Querkraft umformuliert werden kann (siehe Gleichung 7.9). Bei komplizierten Verkehrlastmodellen in Kombination mit Eigengewicht, Setzung, Temperatur und viele weitere Einwirkungen ist dieser direkte Zusammenhang meist nicht gegeben. Für die Bemessung bedeutet dies, dass der Nachweis auf Spannungsebene zu führen ist: Aus der Bemessungsquerkraft V_{Ed} und dem Bemessungsbiegemoment M_{Ed} im Kontrollschnitt werden eine Schubspannung τ_{xz} und eine Normalspannung $\sigma_{c,x}$ in der Druckzone berechnet. Um den Maßstabseinfluss miteinzubeziehen, wird vorgeschlagen die einwirkende Schubspannung τ_{xz} mit den in Gleichung 7.10 angeführten Faktor zu versehen:

$$\tau_{xz} = \frac{3}{2} \cdot \frac{V_{Ed}}{b \cdot c} \cdot \frac{1}{k_h}$$
(7.14)

Daraus ergeben sich wiederum eine Hauptzug σ_1 - und eine Hauptdruckspannung σ_2 . In Abhängigkeit der Hauptdruckspannung σ_2 kann dann mit Hilfe der in Abschnitt 7.2.1 entwickelten Bruchhypothese eine maximal zulässige Hauptzugspannung $\sigma_{1,zul} = f_{ctd,eff}$ ermittelt werden, welche nun mit der auftretenden Hauptzugspannung σ_1 verglichen wird. Bei Unterschreitung der zulässigen Hauptzugspannung $\sigma_{1,zul} = f_{ctd,eff}$ gilt der Nachweis als erbracht.

$$\sigma_{1,zul} = f_{ctd,eff} = \left(1, 6 - 0, 2 \cdot f_{ck}^{\frac{1}{3}} + 0, 6 \cdot \frac{\sigma_2}{f_{ck}}\right) \cdot f_{ctd}$$
(7.15)

mit

 f_{ctd} Bemessungswert der einachsialen Zugfestigkeit nach Gleichung 7.22

 f_{cm} mittlere Zylinderdruckfestigkeit

Bei $\frac{\sigma_2}{f_{cm}}$ > -0,1 sollte stets die volle Bemessungszugfestigkeit f_{ctd} angesetzt werden, da die

Bruchhypothese in diesem Bereich keine vernünftigen Ergebnisse liefert.

Beim Bemessungswert der Zugfestigkeit f_{ctd} wird anstatt des 5% - Fraktil- Wertes der Zugfestigkeit die Verwendung der mittleren Zugfestigkeit f_{ctm} vorgeschlagen.

7.2.3.2 Anwendungsgrenzen

Der hier entwickelte Ansatz ist zum jetzigen Zeitpunkt nur für schubschlanke (a/d>3,0) bzw. schlanke Bauteile (l/d>7,0) anwendbar. Da es sich bei der Einleitung großer Kräfte in der Nähe des Auflagers um einen Diskontinuitätsbereich handelt, muss in diesen Fällen auf einen anderen Modellansatz zurückgegriffen werden (z.B.: Stabwerkmodell).

Bei hochfesten Betonen ist das Verhältnis σ_2/f_{ck} bedeutend niedriger als bei normalfesten Beton, womit hier die Anwendungsgrenze der Bruchhypothese nach Gleichung 7.6 meistens verletzt wird. In diesem Fall liefert das hier entwickelte Modell auf der sicheren Seite liegende Ergebnisse. Darüber hinaus zielt das Forschungsvorhaben auf die Bewertung alter bestehender Brückentragwerke ab, bei welchen ausschließlich normalfeste Betone zum Einsatz kamen.

Der Ansatz wurde an Bauteilen unter Einzellast (konstante Querkraft und linear veränderliches Biegemoment) und unter Gleichlast (linear veränderliche Querkraft und parabelförmiger Biegemomentenverlauf) überprüft und darauf aufbauend Kontrollschnitte definiert (siehe Gleichung 7.12 und 7.13). Inwieweit dies auch unter anderen M-V- Interaktionen Gültigkeit behält muss noch theoretisch und experimentell verifiziert werden.

7.3 Querkrafttragfähigkeit von Bauteilen mit geringer Schubbewehrung

7.3.1 Allgemeines

Das Querkrafttragverhalten wird durch die Anordnung von einer Schubbewehrung deutlich verändert, da das Auftreten der ersten Schubrisse nicht zu einem sofortigen Versagen des Systems führt, sondern die freiwerdenden Zugkräfte auf die Querkraftbewehrung umgelagert werden können. Bei zu geringer Querkraftbewehrung führt die Schubrissbildung zu einem Versagen der vertikalen Bewehrung, weshalb in den Normen eine festgelegte Mindestbewehrung a_{sw,min} gefordert wird. Im Zuge dieses Projektes wurde der Fokus auf Bauteile mit geringer Schubbewehrung gelegt. Ein geringer Querkraftbewehrungsgrad liegt vor, wenn die Schubbewehrung maßgebend für das primäre Versagen der Struktur verantwortlich ist. Bei praxisüblichen Längsbewehrungsgraden ist dies der Fall, wenn die Schubbewehrung im Bereich der Mindestschubbewehrung a_{sw,min} gemäß Eurocode 2 [108] liegt. In Versuchen wird meistens durch unrealistisch hohe Längsbewehrungsgrade ein vorzeitiges Biegeversagen ausgeschlossen, wodurch diese Grenze nach oben verschoben wird. Eine schwache Bügelbewehrung trifft man in der Praxis sehr häufig bei Spannbetonbrückentragwerken, welche vor 1966 errichtet wurden. Es wurde damals davon ausgegangen, dass unter rechnerischer Bruchlast das Tragwerk frei von Rissen (Zustand I) blieb und somit

eigentlich keine Bewehrung zur Aufnahme der Schubkraft erforderlich wäre. Es wurde zwar dennoch eine Mindestbewehrung gefordert, deren Höhe jedoch in den Ermessungsspielraum des planenden Ingenieurs gelegt wurde. Leonhardt [66] wies darauf hin, dass dies im scharfen Wettbewerb zu so geringen Schubbewehrungsgraden führte, dass sogar einige Schäden an Spannbetontragwerken infolge Schubrissbildung zu verzeichnen waren. Er nannte jedoch keine konkreten Beispiele.

Die Zugfestigkeit f_{ct} des Betons wird infolge von Eigenspannungen deutlich reduziert, so dass sich auch bei sehr stark vorgespannten Bauteilen Schubrisse bilden können.

Bei Stahlbetonbrücken kommen geringe Bügelbewehrungsgrade eigentlich nicht vor, da die Querkraftbemessung im Brückenbau bis zur Einführung der ÖNORM B4700 [124] stets auf einem Mörsch'schen Fachwerk mit unter 45° geneigten Druckstreben (siehe Abschnitt 4.2.2.1) basierte. Kupfer, Leonhardt und einige andere wiesen jedoch bereits in den 60er Jahren darauf hin, dass das 45° Fachwerk zu sehr hohen Schubbewehrungsgraden führt bzw. die rechnerische Tragfähigkeit stark unterschätzt. Im Umkehrschluss bedeutet dies für die Beurteilung von bestehenden Stahlbetonbrückentragwerken, dass diese in der Regel kein rechnerisches Defizit in Bezug auf die Querkrafttragfähigkeit aufweisen werden. Nachfolgend soll ein erster Ansatz formuliert werden, mit dem es ermöglicht werden soll, die Schubtragfähigkeit von Bauteilen mit geringer Schubbewehrung abschätzen zu können.

7.3.2 Querkrafttragfähigkeit von Stahlbetonträgern

Der Versagensmechanismus infolge Überbeanspruchung hinsichtlich Querkraft bei Bauteilen mit nur sehr geringer Schubbewehrung ähnelt sehr jenem von schubunbewehrten Stahlbetonträgern (siehe Abbildung 7.14). Der Zeitpunkt der Schubrissbildung wird von der Querkraftbewehrung nicht beeinflusst, weshalb bis zu dieser Belastungsstufe das Tragverhalten quasi identisch ist. Während die Schubrissbildung bei schubschlanken Bauteilen ohne Querkraftbewehrung meist zu einem spröden Versagen durch Einschnürung der Druckzone führt, kann dieses Aufspalten des ungerissenen Bereichs oberhalb der Nulllinie durch die Kraftübernahme der Bügelbewehrung verhindert werden. Bei Laststeigerung lokalisiert sich die Dehnung in einem sogenannten "kritischen" Schubriss, welcher sich massiv öffnet. Es findet eine deutliche Schubrotation um die Rissspitze statt, welche immer weiter in die Druckzone vordringt. Dadurch wird die Querkrafttragfähigkeit der ungerissenen Druckzone kontinuierlich reduziert, weshalb die Bügelspannung immer weiter zunimmt. Ab einer gewissen kritischen Rissöffnung wird die Zugfestigkeit der Schubbewehrung erreicht, wodurch diese abreißt und keine Umlagerung auf andere Tragmechanismen mehr stattfinden kann.

FFG

Abbildung 7.14: Vergleich der Rissbilder von Bauteilen mit und ohne Schubbewehrung für verschiedene Querschnittstypen (entnommen aus [91])

Die Rissöffnungen betragen vor dem Versagen dabei meist mehrere Millimeter, weshalb eine Kraftübertragung über die Risse hinweg ausgeschlossen werden kann. Die Rissverzahnung spielt deshalb bei Bauteilen mit geringer Schubbewehrung mit Sicherheit eine untergeordnete Rolle. Die Dübelwirkung kann bei einer praxisüblichen Zuggurtbewehrung am Auflager ebenso vernachlässigt werden. Deshalb wirft sich die Frage auf, ob die Querkrafttragfähigkeit über die alleinige Tragwirkung der Querkraftbewehrung abgetragen werden kann oder ob zusätzliche Tragmechanismen existieren, welche dem Beton angerechnet werden können.

Da die Hauptzugspannung σ_1 im Zustand I in der Nulllinie unter 45° geneigt ist, ging Mörsch [29] im gerissenen Zustand von einem Fachwerk aus, bei welchen die vom Beton gebildeten Druckstreben unter 45° geneigt sind. Abbildung 7.15 (a) zeigt die über die Mörsch'sche Fachwerkwirkung hinausgehende experimentell ermittelte Querkrafttragfähigkeit in Abhängigkeit des mechanischen Querkraftbewehrunggrades $\omega_w = \rho_w \cdot f_y/f_c$ für die Querkraftversuche aus der in Abschnitt 3.3 erstellten Datenbasis an Bauteilen mit geringer Schubbewehrung. Bei Anwendung eines 45° Fachwerks kann keine eindeutige Korrelation mit dem mechanischen Schubbewehrungsgrad ω_w bzw. Längsbewehrungsgrad ω_s für den sogenannten "Betontraganteil" ausfindig gemacht werden. Eine konstante Druckstrebenneigung θ wie sie gemäß Mörsch'schen Fachwerk und auch im Eurocode 2 [108] angewendet wird, scheint somit nicht gerechtfertigt.

Abbildung 7.15: Über die Mörsch'sche Fachwerkwirkung hinausgehende experimentelle Tragreserven für verschiedene Querschnittstypen in Abhängigkeit von (a) mechanischer Bügelbewehrungsgrad ω_w (b) mechanischer Längsbewehrungsgrad ω_s

Um die Querkrafttragfähigkeit von Bauteilen mit geringer Schubbewehrung ausschließlich mit der Fachwerkwirkung zu erklären, bedarf es in vielen Fällen eine sehr geringe Druckstrebeneigung θ_p , welche jedoch mit den Versuchsbeobachtungen nicht übereinstimmt (siehe Abbildung 7.16). Gemäß dem Fachwerkmodell mit variabler Druckstrebenneigung θ des Eurocode 2 [108] wird unterstellt, dass die Richtung der Schubrisse nicht mit jener der Spannungen in den Druckstreben übereinstimmt, was eine Kraftübertragung über die Risse hinweg voraussetzt. Da diese jedoch aufgrund der markanten Rissöffnung im maßgebenden Schubriss ausgeschlossen ist, kann sich diese erforderliche Druckstrebenneigung θ_p nicht einstellen.

Abbildung 7.16: Erforderliche Druckstrebenneigung θ zur Abtragung der gesamten Querkraft über die Bügelbewehrung

Deshalb wird für die Beschreibung des Querkrafttragverhaltens von schwach schubbewehrten Stahlbetonträgern vorgeschlagen, den Traganteil der Querkraftbewehrung über eine Rissneigung θ_{cr} zu berechnen.

Abbildung 7.17: Schubrisse für verschiedene Bügelbewehrungsgrade ρ_w nach Versuche von Leonhardt und Walther [20, 96]: (a) ρ_w = 0,31%(b) ρ_w = 2,8%

Wie man anhand der Rissbilder von Schubversuchen von Leonhardt et al. [20, 96] in Abbildung 7.17 erkennen kann, hängt das Rissbild im Schubfeld maßgebend von Schubbewehrungsgrad ρ_w und den geometrischen Abmessungen ab. Während sich bei Bauteilen mit geringer Schubbewehrung mit einer angemessen Stegdicke nur wenige Schubrisse bilden (siehe Abbildung 7.17 (a)), entwickeln sich stark profilierten Trägern mit dünnen Stegen und starker Schubbewehrung viele feine Schubrisse (siehe Abbildung 7.17 (b)). Bei Betrachtung des Rissverlaufs fällt auf, dass bei schwacher Querkraftbewehrung die Schubrisse in Richtung der Lasteinleitung abknicken und somit keine konstante Neigung über den gesamten Verlauf aufweisen. Dies kann auf die erhöhte Schubrotation infolge der Dehnungslokalisierung in einigen wenigen Schubrissen zurückgeführt werden. Im Gegensatz dazu, wird mit Erhöhung des Bügelbewehrungsgrades die Schubrotation zusehends verhindert wird, weshalb die Risse zumeist einen konstanten Rissverlauf im Schubfeld besitzen.

In der in Abschnitt 3.3 erstellten Versuchsdatenbank von Stahlbetonbauteilen mit geringer Schubbewehrung wurden auch die Rissbilder, falls diese in der jeweiligen Literatur dargestellt wurden, analysiert. Dabei wurde die Rissneigung θ_{cr} als konstanter Wert abgelesen, indem eine Verbindungslinie zwischen der Rissspitze und dem Kreuzungspunkt des Schubrisses mit der Längsbewehrung gezogen wurde (siehe Abbildung 7.18 (a)). Die Auswertung offenbarte, wie zu erwarten, eine sehr große Streuung (siehe Abbildung 7.18 (b)) der gemessenen Schubrisswinkel $\theta_{cr,exp}$. Im Falle von sehr geringen Schubbewehrungsgraden konnte kein direkter Zusammenhang zwischen der experimentellen Schubrissneigung $\theta_{cr,exp}$ und dem mechanischen Bügelbewehrungsgrad ω_w entdeckt werden. Auswertungen von Görtz [53] bezüglich des Risswinkels auch für stärkere Schubbewehrung haben jedoch gezeigt, dass die Neigung in Richtung 45° strebt.

Abbildung 7.18: Experimentelle Rissneigung $\theta_{cr,exp}$: (a) Definition der Rissneigung (b) $\theta_{cr,exp}$ in Abhängigkeit der mechanischen Schubbewehrungsgrades ω_w

Die Rissneigung θ_{cr} wird im Zuge des hier entwickelten Ansatzes in Abhängigkeit des Bügelbewehrungsgrades ρ_w und der vorhandenen Stahldehnung ϵ_s im Bemessungsschnitt ermittelt.

$$\theta_{cr} = f\left(\varepsilon_s, \rho_w\right) \tag{7.16}$$

Die Abhängigkeit vom Dehnungszustand in der Längsbewehrung ε_s wird auch im österreichischen nationalen Anwendungsdokument zum Eurocode 2 [109] vorgeschlagen. In Abbildung 7.19 kann diese Abhängigkeit auf Basis von Versuchsdaten teilweise bestätigt werden, wobei nochmals auf die signifikante Streuung der Rissneigung hingewiesen werden muss.

Abbildung 7.19: Experimentelle Rissneigung $\theta_{cr,exp}$ in Abhängigkeit der Dehnung in der Längsbewehrung ϵ_s

Da bei schwacher Bügelbewehrung immer davon ausgegangen werden kann, dass diese im Bruchzustand die Fließgrenze f_{yw} erreichten, ergibt sich der Querkraftwiderstand der Schubbewehrung entlang des kritischen Schubrisses zu

$$V_{R,s} = \frac{A_{sw}}{s_w} \cdot (d-c) \cdot f_{yw} \cdot \cot \theta_{cr}$$

mit

- *A_{sw}* Querschnittsfläche eines Querkraftbewehrungselementes
- *s*_w Längsabstand der Querkraftbewehrungselemente
- c Druckzonenhöhe
- f_{vw} Streckgrenze der Querkraftbewehrung
- θ_{cr} Rissneigung (Gleichung 7.16)

Wie bereits zuvor erläutert, reicht es nicht die Querkrafttragfähigkeit ausschließlich auf die Tragfähigkeit der Bügelbewehrung zu reduzieren, weshalb der ungerissenen Druckzone ebenso ein Abtrag von Querkräften zugetraut wird (siehe Abbildung 7.20 (a)). Dieser zusätzliche Traganteil existiert so lange, bis in der Druckzone ein kritischer zweiachsialer Spannungszustand erreicht wird. Der Grundgedanke ist somit derselbe wie bei Bauteilen ohne Schubbewehrung, wobei die Annahmen leicht modifiziert werden müssen. Der hier entwickelte Ansatz bezieht sich auf Querschnittsebene (siehe Abbildung 7.20 (b))

Abbildung 7.20: Modellannahmen Schubfeldmodell für Bauteile mit geringer Schubbewehrung (a) Frei-Körperdiagramm entlang des maßgebenden Schubrisses (b) Reduzierung der Modellannahmen auf Querschnittsebene

Auch wird von einem Ebenbleiben der Querschnitt ausgegangen, was jedoch streng genommen aufgrund der Dehnungslokalisierung in einem sogenannten "kritischen" Schubriss nicht mehr gültig ist. Die daraus resultierende Schubrotation führt zu einer kontinuierlichen Einschnürung der Druckzone und zu einem Verlassen des Gültigkeitsbereiches der Bernoulli-Hypothese. Die Berechnung der Druckzonenhöhe c gemäß Gleichung 7.3 würde somit die Tragfähigkeit der Druckzone erheblich überschätzen. Für die Bestimmung der Druckzonenhöhe wird somit folgender Ansatz gewählt

$$c_{\rm mod} = \beta_c \cdot c \tag{7.18}$$

mit

 $\beta_{c} = f(\varepsilon_{s})$ Abminderungsfaktor

c Druckzonenhöhe nach Gleichung 7.3

(7.17)

bm

Da bei Anordnung einer Schubbewehrung der Maßstabseinfluss verloren geht [91], ergibt sich der Anteil der Druckzone zum Querkraftwiderstand in Anlehnung an Gleichung 7.11 zu

$$V_{R,c} = \frac{2}{3} \cdot b_{V,eff} \cdot c_{\text{mod}} \cdot \tau_{xz,\text{max}}$$
(7.19)

mit

 $au_{\rm xz,max}$ maximale aufnehmbare Schubspannung in der Druckzone gemäß Glei-

chung 7.9

 $b_{V,eff}$ Mitwirkende Flanschbreite auf Schub (siehe Abbildung 7.21)

Für die mitwirkende Breite des Druckgurtes auf Schub existieren in der Literatur diverse Ansätze. Während Görtz [53] von einer Abhängigkeit der Flanschhöhe h_{fc} ausgeht, wird von Placas und Regan [97] ein konstanter Beitrag der Flanschbreite b_{fc} angenommen. Die beste Übereinstimmung mit Versuchsergebnissen konnte erzielt werden, wenn die mitwirkende Breite $b_{V,eff} = 2/3 \cdot b_{fc} \le 3 \cdot b_w$ eingeführt wurde. Den positiven Effekt eines Druckflansches konnten eigene Versuche jedoch nicht bestätigen [91], weshalb es noch weitere experimentelle Untersuchungen benötigt, um diesen Einfluss genau beschreiben zu können. Es wird daher vorgeschlagen, für die Bewertung bestehender Brückentragwerke die mitwirkende Breite zu vernachlässigen ($b_{V,eff} = b_w$).

Die Querkrafttragfähigkeit V_R setzt sich somit aus einem Anteil der Schubbewehrung V_{R,s} und einem auf den Tragkapazität der Druckzone basierenden Betontraganteil V_{R,c} zusammen:

$$V_{R} = V_{R,s} + V_{R,c}$$
(7.20)

Aufgrund der Reduktion der Druckzonenhöhe in Abhängigkeit der Dehnung in der Längsbewehrung ε_s fällt der Einfluss der Schubschlankheit nicht so stark ins Gewicht wie bei Bauteilen ohne Schubbewehrung. Der Kontrollschnitt ergibt sich somit im Abstand d von der Einzellast

 $x_{krit} = a - d$ (Einzellast)

(7.21)

Da es kaum Versuche für Bauteile mit Schubbewehrung unter gleichförmiger Belastung gibt, wird für diese Lastart der maßgebende Schnitt auf der sicheren Seite liegend mit $x_{krit} = d$ angenommen.

Der in diesem Abschnitt hergeleitete Ansatz kann nur für Bauteile mit geringer Schubbewehrung angewendet werden, da in diesen Fall aufgrund der großen Rissöffnung Verzahnungseffekte entlang des Rissufers mit Sicherheit ausgeschlossen werden können. Bei stärkerer Bügelbewehrung in Kombination mit dünnen Stegen muss auch ein besonderes Augenmerk auf ein Versagen des Betons auf Druck zwischen den Rissen gelegt werden. Dabei spielt die Reduktion der einachsialen Druckfestigkeit f_c aufgrund der Querzugbelastung eine maßgebende Rolle [98]. Im Zuge dieses Forschungsvorhabens wurde dieses Thema jedoch nicht näher behandelt.

7.3.3 Vergleich mit Versuchsergebnissen

Der in Abschnitt 7.3.2 hergeleitete Ansatz zur Bestimmung der Querkrafttragfähigkeit bei Bauteilen mit geringer Schubbewehrung soll nun anhand der in Abschnitt 3.3 erstellten Datenbasis an Querkraftversuchen unter punktueller Belastung verglichen werden. Dabei wurden nur schubschlanke Träger (a/d>2,5) in den Vergleich miteinbezogen.

Abbildung 7.22 zeigt das Verhältnis zwischen den experimentellen Bruchlasten V_{Exp} und der rechnerischen Querkrafttragfähigkeit in Abhängigkeit des Bügelbewehrungsgrades ρ_w . Mit dem hier entwickelten Ansatz konnte eine gute Übereinstimmung mit den Versuchsergebnissen erzielt werden (Abbildung 7.22 (a)). Im Vergleich zu der Vorhersage nach Eurocode 2 [108, 109] (Abbildung 7.22 (b)) konnte mit dem Schubfeldmodell eine deutlich geringere Streuung erzielt werden. Durch den additiven Betontraganteil auf Basis des Querkraftwiderstandes der Druckzone wurde ein zusätzlicher Tragmechanismus nutzbar gemacht, mit welchem die Querkrafttragfähigkeit von Stahlbetonträgern mit geringer Schubbewehrung wesentlich besser vorhergesagt werden kann.

Abbildung 7.22: Verhältnis der experimentellen Bruchlasten V_{Exp} zur rechnerischen Querkrafttragfähigkeit in Abhängigkeit des Bügelbewehrungsgrades ρ_w: (a) V_R nach eigenem Ansatz nach Gleichung 7.20 (b) ÖNORM EN 1992-1-1 [108] +ÖNORM B 1992-1-1 [109]

7.3.4 Querkrafttragfähigkeit von Spannbetonträgern

7.3.4.1 Unterteilung in Zonen

Bei Stahlbetonbauteilen kann man davon ausgehen, dass die Biegerissbildung im Bruchzustand bereits sehr ausgeprägt ist, d.h. der ungerissene Bereich in der Zugzone ist sehr kurz. Bei Spannbetonträgern verändert sich aufgrund des Eigenspannungszustandes infolge Vorspannung das Rissbild im Vergleich zu Bauteilen aus Stahlbeton (siehe Abschnitt 5.2.3.2 und Abbildung 5.19). Zum einen wandert bei moderater Vorspannkraft der ungerissene Bereich in Richtung Trägermitte und zum anderen entsteht meist ein Bereich, welcher ausschließlich "reine" Schubrisse aufweist. Deshalb schlugen Bachmann und Thürlimann [71] und darauf aufbauend auch Leonhardt [66] vor, die Querkraftbemessung von Spannbetonträgern in verschiedene Zonen zu unterteilen. Mit der Einführung des Eurocode 2 [108, 109,110, 111] wurde dieser Gedanke jedoch verworfen. Die Querkraftbemessung hat darin unabhängig vom Bemessungsschnitt stets auf Basis des Fachwerkmodells mit variabler Druckstrebenneigung θ zu erfolgen. Die in Bereichen gestaffelte Querkraftbemessung wird im Zuge dieses Forschungsvorhabens wieder aufgegriffen, wobei auf die Unterteilung der einzelnen Zonen ein besonderes Augenmerk gelegt wird:

Für die Abgrenzung der Bereiche A und B stellt die Hauptzugspannung σ₁ im Grenzzustand der Tragfähigkeit das maßgebende Kriterium dar. In vollkommen überdrückten Bereichen wird die Betonzugfestigkeit f_{ct} von der Hauptdruckspannung σ₂ abgemindert. Deshalb wird vorgeschlagen, die in Abschnitt 7.2.3 vorgeschlagene, zweiachsiale Bruchhypothese (siehe Gleichung 7.15) anzuwenden.

bm

 Bei stark profilierten Querschnitten muss die Hauptzugspannung σ₁ auf verschiedenen Höhenlagen kontrolliert werden, da ihr Maximum nichts zwangsläufig auf Höhe der Schwerachse auftreten muss. Der Bemessungswert der Zugfestigkeit f_{ctd} soll dabei gemäß Eurocode 2 [108] angenommen werden, wobei der 5% Fraktil-Wert durch den Mittelwert der Zugfestigkeit f_{ctm} ersetzt wird:

$$f_{ctd} = \frac{\alpha_{ct} \cdot f_{ctm}}{\gamma_c}$$
(7.22)

mit

- α_{ct} Beiwert für die Berücksichtigung von Langzeitauswirkungen.
- *f_{ctm}* mittlere Betonzugfestigkeit
- γ_c Teilsicherheitsfaktor Beton

Diese Modifikation wurde auch in [99] von Herbrand und Hegger vorgeschlagen.

 Die Grenze zwischen gerissenem und ungerissenem Bereich am Biegezugrand wird dadurch bestimmt, ob die Biegezugspannung σ_{x,t} an der Zugfaser die Zugfestigkeit f_{ctd} gemäß Gleichung 7.22 überschreitet.

7.3.4.2 Vorgeschlagene Querkraftbemessung in den verschiedenen Zonen Bereich A:

Dieser Bereich bleibt frei von Schubrissen und weist somit keine Querkraftgefährdung auf. **Bereich B**:

Die Schubrisse bilden sich nicht aus Biegerissen, sondern treten ausschließlich im Steg auf. Die freiwerdende Zugkraft muss durch die Bügelbewehrung aufgenommen werden, da ansonsten nach der Schubrissbildung ein sofortiges Versagen der Struktur zu erwarten ist. Bei Einhaltung der Mindestbewehrung a_{sw,min} gemäß Eurocode 2 [108] kann davon ausgegangen werden, dass dieses spröde Bauteilverhalten verhindert wird. Die Querkraft wird in diesem Bereich zu einem über die Querkraftbewehrung abgetragen und zum anderen über den ungerissenen Zug- und Druckgurt. Die Neigung der Schubrisse verläuft in diesem Bereich in Richtung der Hauptspannungsrichtung. Ein Teil der Querkraft kann in dieser Zone auch über eine geneigte Druckresultierende abgetragen werden, wobei deren Anteil von der Spanngliedführung abhängig ist (siehe Abbildung 5.22).

In Versuchen wurde immer wieder festgestellt, dass die Schubrissbildung bevorzugt auf Höhe der Spannglieder auftritt. Deshalb sollte die Hauptzugspannung σ_1 auf Höhe der Spannglieder mit einer reduzierten Stegbreite b_w kontrolliert werden. Dabei wird auf den Ansatz der effektiven Stregbreite b_{w,nom} zurückgegriffen:

$$b_{w,nom} = b_w - 0.5 \cdot \sum \emptyset_h \tag{7.23}$$

mit

- *b*_w Stegbreite
- \emptyset_h Durchmesser Hüllrohr

Bei Einhaltung der zulässigen Hauptzugspannung $\sigma_{1,zul} = f_{ctd,eff}$ nach Gleichung 7.15 kann eine Querkraftgefährdung unter der Voraussetzung, dass der Mindestschubbewehrungsgrad $\rho_{w,min}$ eingehalten ist, ausgeschlossen werden.

Bereich C:

Dieser Bereich ist dadurch gekennzeichnet, dass sich die Schubrisse aus Biegerissen entwickeln. Ein Hauptzugspannungsnachweis im Zustand I kann in diesem Bereich nicht mehr durchgeführt werden, da aufgrund der Biegerisse die lineare Elastizitätstheorie ihre Gültigkeit verliert. In dieser Zone kann von denselben Modellannahmen wie bei Stahlbetonbauteilen ausgegangen werden (siehe Abschnitt 7.3.2), wobei folgende zusätzliche positive Effekte zu nennen sind:

- Die Druckzonenhöhe wird zusätzlich von der Höhe der Vorspannkraft beeinflusst. Je höher die Vorspannung, desto größer die Druckzone und desto größer der Schubwiderstand.
- Die Vertikalkomponente eines geneigten Spannglieds verringert die Schubbeanspruchung der Druckzone.
- Eine erhöhte Beanspruchung führt zu einem Spannungszuwachs im Spannglied und somit zu einer Vergrößerung der Vertikalkomponente infolge Vorspannkraft.

Bereits Walther und Leonhardt [66] wiesen zu Beginn der 70er Jahre darauf hin, dass ein erheblicher Teil der Querkräfte über den geneigten Druckgurt abgetragen werden kann (siehe Abschnitt 5.2.3.4). Diese Komponente entfällt bei Stahlbetontragwerken in der Regel, da die Biegerisse nah ans Auflager fortschreiten und relativ weit in den Querschnitt hineinragen, so dass der Druckgurt beinahe gerade verläuft. Bei Spannbetontragwerken hängt die Höhe des ungerissenen Bereichs deutlich stärker von der Beanspruchung ab,

wodurch eine Neigung der Druckgurtkraft entsteht. Die Vertikalkomponente dieser Druckresultierenden liefert einen Beitrag zum Abtrag von Querkräften [46, 66, 80, 99]. Da dieser Anteil von der Biegebeanspruchung abhängt und somit belastungsabhängig ist, muss dieser Tragmechanismus sehr vorsichtig behandelt werden. Bei höherer Ausnützung der Biegetragfähigkeit M_{Rd} verliert dieser Tragmechanismus zusehends seine Bedeutung, womit wiederum auf das hier entwickelte Modell zurückgegriffen werden kann.

7.3.4.3 Vergleich mit Versuchsergebnissen

Da es auf diesem Gebiet kaum Versuche gibt bzw. nur Versuche, welche für die Brückenbaupraxis nicht relevant sind (sehr kleine Versuchsträger mit Vorspannung im sofortigen Verbund mit gerader Spanngliedführung) muss auf einen Vergleich mit Versuchsergebnissen verzichtet werden. Es muss an dieser Stelle nochmals klar darauf hingewiesen werden, dass es kaum praxisorientierte Versuche an Spannbetonträgern mit geringer Schubbewehrung gibt. Auf diesem Gebiet ist mit Sicherheit noch großes Forschungspotential, vor allem wenn man bedenkt, dass gerade Spannbetonbrücken, welche nur über eine konstruktive Querkraftbewehrung verfügen, die größte Querkraftgefährdung aufweisen. Um den hier entwickelten Ansatz auch für eine Nachrechnung anwenden zu können, bedarf es weiterer gezielter experimenteller Untersuchungen, um die Modellannahmen zu verifizieren und in weiterer Folge auch abzusichern.

BRÜCKENNACHRECHNUNG 8

8.1 Allgemeines

Im Zuge dieses Kapitels soll die Anwendbarkeit des im Rahmen dieses Forschungsvorhabens entwickelten Querkraftmodells gezeigt werden. Dabei wurden einige rechnerisch querkraftgefährdete bestehende Brückentragwerke ausgewählt und gemäß den damals verwendeten Normenwerken, gemäß den derzeit gültigen Normen (Eurocode 2 und nationaler Anhang) und gemäß dem hier entwickelten Ansatz nachgerechnet.

8.2 Objekt G63

8.3 Sparchenbachbrücke

Die dreistegige, vorgespannte Plattenbalkenbrücke wurde im Jahre 1967 errichtet. Zu dieser Zeit war in Österreich für die Bemessung von Spannbetonbrücken die DIN 4227:1953 [125] gültig. Durch die Herausgabe der "Ergänzenden Bestimmungen zur DIN 4227" [126] im Jahre 1966 wurde für die Höhe der Mindestschubbewehrung ein normativ festgelegter Wert asw.min eingeführt. Diese Regelung kam bei diesem Brückentragwerk bereits zur Anwendung, weshalb im Vergleich zu Brückentragwerken, welche vor 1966 errichtet wurden, bereits eine passable Mindestschubbewehrung angeordnet wurde.

Das Einfeldsystem weist eine Stützweite von 39,6m auf und eine Breite von 15,8m. Die Höhe eines Plattenbalken ergibt sich zu h= 2,5m. Die Dicke der Fahrbahnplatte beträgt 20cm, wobei diese an den Balken gevoutet ist.

Das Tragwerk wurde für Brückenklasse I ausgelegt.

8.3.1 Materialkennwerte

Das Tragwerk wurde mit einer Betongüte B450 hergestellt. Die Materialkennwerte ergeben sich in Anlehnung an die ONR 24008 [114] zu

 $f_{ck} = 30,7 \text{ N/mm}^2$

 $f_{ctm} = 2,94 \text{ N/mm}^2$

$$E_{cm} = 33000 \,\mathrm{N/mm^2}$$

Als Bewehrung wurde ein Rippentorstahl 50 (Klasse IV) verwendet, welcher folgende Festigkeiten aufweist

$$f_{y} = 500 \,\text{N/mm^{2}}$$

 $E_s = 200.000 - 210.000 \,\mathrm{N/mm^2}$

Als Spannstahl wurde ein St 135/155 verwendet.

bm

 $f_{p,0.2} = 1320 \,\mathrm{N/mm^2}$

 $f_{p,u} = 1520 \,\mathrm{N/mm^2}$

 $E_s = 200.000 \text{ N/mm}^2$

8.3.2 Planausschnitte – Bewehrung und Spannglieder

In den Mittelträgern wurde zu der vertikal angeordneten Bügelbewehrung (Ø12/20cm) im Auflagerbereich eine schräge Zulagebewehrung (6xØ18/100cm) eingelegt (siehe Abbildung 8.2). In den Randträgern wurde auf die zusätzliche Schrägbewehrung verzichtet, weshalb für die weiteren Berechnungen lediglich ein Randträger in Betracht gezogen wird. Alle weiteren Angaben beziehen sich ebenso auf diesen.

Die vorhandene Schubbewehrung liegt geringfügig oberhalb der Mindestschubbewehrung gemäß ÖNORM B 1992-2 [110]

$$\rho_{w,\min} = 0.15 \cdot \frac{f_{ctm}}{f_{ywd}} = 0.15 \cdot \frac{2.94}{435} = 0.001014 < \rho_{w,vorh} = \frac{2.26}{20 \cdot 70} = 0.00162$$

Die Fahrbahnplatte besitzt in Querrichtung keine Bügelbewehrung. Es wurde lediglich am Ende des gevouteten Bereichs ein Längsstab aufgebogen.

Die Vorspannung wurde über ein System der Firma Vorspann-Technik über 15 Spannglieder eingebracht (VT 120). Ein Spannglied besteht aus 12 Litzen mit je einem Durchmesser von 12,2mm. Die maximal zulässige Spannung nach dem Vorspannen betrug

$$\sigma_{zul} = 0,55 \cdot f_{p,u} = 0,55 \cdot 1520 = 836 \text{ N/mm}^2$$

Gemäß Originalstatik wurde eine Spannstahlspannung von $\sigma_p = 795 \text{ N/mm}^2$ gewählt. Daraus ergibt sich eine Vorspannkraft von $P_0 = 16720 \text{ kN}$ ohne Abzug von Verlusten. Die Spannglieder verfügen über einen parabelförmigen Verlauf, wobei im Auflagerbereich die Spannglieder aufgefächert wurden (siehe Abbildung 8.3).

Über die Steghöhe wurde eine Verteilerbewehrung Ø12/20cm angeordnet, eine Mindestlängsbewehrung wie sie heutzutage bei Spannbetontragwerken zur Erhöhung der Robustheit üblich ist, wurde damals nicht angedacht.

AISIFIIINIAIG bmV

Abbildung 8.1: Querschnitt Sparchenbachbrücke

Abbildung 8.2: Ausschnitt Bewehrungspläne: (a) Mittelträger (b) Randträger

Abbildung 8.3: Spanngliedverlauf für Trägerhälfte

8.3.3 Querkraftbemessung gemäß Originalstatik

Auf eine Nachrechnung gemäß der damals gültigen Norm wird verzichtet, da bei diesem Beispiel die Originalstatik des Bauwerks noch vorhanden ist.

Gemäß Originalstatik wurde für den Randträger ein Hauptzugspannungsnachweis sowohl unter Gebrauchslast als auch unter Bruchlast im Zustand I (ungerissen) geführt. Da in beiden Fällen die zulässigen Hauptzugspannungen eingehalten werden konnten, wurde lediglich die Mindestbewehrung asw, min gemäß den "Ergänzenden Bestimmungen zur DIN 4227" [126] angeordnet.

8.3.4 Nachrechnung gemäß ONR 24008 – Stufe 1

8.3.4.1 Belastung und Schnittgrößenermittlung

Bei der Ermittlung der Schnittgrößen wurden folgende Belastungen berücksichtigt:

ständige Lasten

FFG

- Eigengewicht der Konstruktion
- Ausbaulasten: Fahrbahnbelag, Randbalken, Geländer, Schutzeinrichtung
- Verkehrslasten:
 - Lastmodell 1 gemäß ÖNORM EN 1991-2 [131]

Die Belastungen wurden gemäß den Ausführungen der ÖNORM EN 1991-2 [131] auf die Mittelebene der Fahrbahnplatte ausgebreitet. Gemäß ÖNORM EN 1992-2 [110] ist es zulässig, den Anteil der Querkraft von Einzellasten, welche innerhalb von 2d vom Auflagerrand an der Bauteiloberseite angreifen, mit einem Reduktionsfaktor β (Gleichung 5.1) abzumindern. Von diesem Passus wurde bei auflagernahen Radlasten rigoros Gebrauch genommen, um den direkten Lastabtrag über eine Druckstrebe miteinzubeziehen. Dies führt in den meisten Fällen dazu, dass sich die maßgebende Laststellung meist vom Auflager entfernt. Abbildung 8.4 (a) zeigt die Querkraftlinie für das Verkehrslastmodell 1 mit Anpassungsfaktoren α_{Qi} = 1,00 mit der maßgebenden Laststellung der Radlasten im Abstand von 2d vom Auflager. Aufgrund des parabelförmigen Spanngliedverlaufs und der Auffächerung der Spannkabel im Auflagerbereich wird ein Teil der einwirkenden Querkraft VEd.0 von der Vertikalkomponente der Spannkraft V_P abgemindert. Ein kleiner Teil der gleichmäßigen Belastung infolge Eigengewicht und Ausbau kann im Auflagerbereich ebenso direkt abgetragen werden, weshalb sich der kritische Bemessungsschnitt im Abstand d vom Auflager ergibt.

Abbildung 8.4: Schnittgrößen infolge ständiger Lasten und Verkehrslastmodell 1 mit Laststellung der Radlasten 2d vom Auflager entfernt: (a) Querkraftlinie (b) Biegemomentenlinie

Neben dem Verkehrslastmodell 1 wurde auch das Lastmodell 3 (Sonderfahrzeug) als Belastung angesetzt. Wie man an Abbildung 8.5 (a) erkennen kann, liefert das 15-achsige Sonderfahrzeug mit 200kN Achslasten höhere rechnerische Querkräfte V_{Ed}

Abbildung 8.5: Schnittgrößen infolge ständiger Lasten und Verkehrslastmodell 3 (Sonderfahrzeugte) mit Laststellung der Radlasten 2d vom Auflager entfernt: (a) Querkraftlinie (b) Biegemomentenlinie

8.3.4.2 Querkraftnachweis gemäß Eurocode 2

Entsprechend ÖNORM EN 1992-2 [110] ist auch im Falle eines Spannbetontragwerkes das Fachwerkmodell mit variabler Druckstrebenneigung θ anzuwenden. Gemäß dem österreichischen nationalen Anwendungsdokument [111] zur ÖNORM EN 1992-2 [110] darf unter Voraussetzung eines vollkommen überdrückten Querschnitts ($\Delta \sigma_p < 0$ N/mm²) die minimale

bm

"z ist der innere Hebelarm bei einem Bauteil mit konstanter Höhe, der zum Biegemoment im betrachteten Bauteil gehört. Bei der Querkraftbemessung von Stahlbeton ohne Normalkraft darf im Allgemeinen der Näherungswert z = 0,9d verwendet werden."

Bei parabelförmiger Spanngliedführung variiert der innere Hebelarm z über die Länge. Es ist jedoch nicht klar geregelt, ob nun z gemäß des maximalen Biegemoments oder im betrachteten Querschnitt mit zugehörigen Biegemoment berechnet werden soll. Es wird für die hier durchgeführte Nachrechnung daher folgende Vorgehensweise gewählt: Die statische Nutzhöhe d wird aufgrund der verschiedenen Spanngliedlagen folgendermaßen gemittelt

$$d = \frac{A_{s} \cdot f_{sy} \cdot d_{s} + \sum_{i=1}^{n} A_{p,i} \cdot f_{py} \cdot d_{p,i}}{A_{s} \cdot f_{sy} + \sum_{i=1}^{n} A_{p,i} \cdot f_{py}}$$
(8.1)

Der innere Hebelsarm z wird hier auch für Spannbetonbauteile mit 0,9d angenommen. Die Querkrafttragfähigkeit $V_{Rd,s}$ der zweischnittigen Bügelbewehrung (Ø12/20cm) im Abstand d vom Auflager ergibt sich somit zu

$$V_{Rd,s} = \frac{A_{s,w}}{s_{w}} \cdot z \cdot f_{ywd} \cdot \cot \theta = \frac{2,28}{20} \cdot 0,9 \cdot 158 \cdot 43,5 \cdot 2,5 = 1.763 \, kN$$

Die maximale Druckstrebentragfähigkeit V_{Rd,max} ergibt sich zu

$$V_{Rd,\max} = \alpha_{cw} \cdot v \cdot f_{cd} \cdot b_w \cdot z \cdot \frac{1}{\tan \theta + \cot \theta} = 1,24 \cdot 0,53 \cdot 20,5 \cdot 0,7 \cdot 0,9 \cdot 1,47 \cdot \frac{1}{0,4+2,5} \cdot 10^3 = 4.302 \, kN$$

mit

$$\alpha_{cw} = 1 + \frac{\sigma_{cp}}{f_{cd}} = 1 + \frac{4,9}{20,5} = 1,24 \quad \text{für} \quad 0 < \sigma_{cp} \le 0,25 \cdot f_{cd}$$

🖉 AISIFI I INIAIG 🔰 bm🔍 🚺

$$v = 0, 6 \cdot \left(1 - \frac{f_{ck}}{250}\right) = 0, 6 \cdot \left(1 - \frac{30, 7}{250}\right) = 0, 53$$
$$b_w = b_{w,nom} \quad \text{da} \quad \frac{b_w}{8} = 8, 75 \text{ cm} > \emptyset_h = 6, 25 \text{ cm}$$

Bei Anwendung des Fachwerkmodells mit variabler Druckstrebenneigung θ gemäß Eurocode 2 [110, 111] kann der Nachweis der Querkrafttragfähigkeit der Zugstreben V_{Rd,s} nicht erfüllt werden.

$$\eta_{LM1} = \frac{V_{Rd,s}}{V_{Ed}} = \frac{1.763}{3.190} = 0,55 < 1,00$$
 Lastmodell 1

Der Nachweis der Tragfähigkeit der Druckstrebe V_{Rd,max} direkt am Auflager konnte ebenso nicht erbracht werden.

$$\eta_{LM1} = \frac{V_{Rd,max}}{V_{Ed}} = \frac{4.302}{4.417} = 0,97 < 1,00$$
 Lastmodell 1

Dass sogar die Druckstrebentragfähigkeit nicht erfüllt werden kann, ist dem konservativen Ansatz für den inneren Hebelsarm z sowie der flachen Druckstrebenneigung θ geschuldet. Bei einer Annahme einer Druckstrebenneigung θ von 45° erhöht sich die Tragfähigkeit auf $V_{Rd,max} = 6.238 \, kN$, wodurch kein rechnerisches Defizit mehr gegeben wäre.

8.3.5 Nachrechnung auf Basis einer Einteilung in Zonen

In diesem Bereich wird die im Abschnitt 7.3.4.2 vorgeschlagene Vorgehensweise bei der Querkraftbemessung von Spannbetonbrücken angewendet:

Bereich A-B:

Eine Berechnung der Längsspannungen infolge Biegung und Normalkraft im Zustand I ergab für das Lastmodell 1 eine Länge für den auf der Zugseite ungerissenen Bereich von $x_{biegerissfrei}=5,4m$ bei einer Laststellung der ersten Achse der Tandemlasten im Abstand von ca. 4d (x≈6,5m) vom Auflager (siehe Abbildung 8.6 (a)). Im nächsten Schritt wurden im ungerissenen Bereich die zulässigen Hauptzugspannungen $\sigma_{1,zul}=f_{ctd,eff}$ gemäß Gleichung 7.15 überprüft. Wie man in Abbildung 8.6 (b) erkennen kann, wurde in diesem Bereich die zulässige Hauptzugspannung $\sigma_{1,zul}$ an keiner Stelle überschritten:

 $\sigma_{1,zul} = f_{ctd,eff} = 1,38 \text{ N/mm}^2 > \sigma_{1,max} = 1,24 \text{ N/mm}^2$

Da auch das Kriterium für die Mindestquerkraftbewehrung a_{sw,min} eingehalten wurde (siehe Abschnitt 8.3.2) kann davon ausgegangen werden, dass in diesem Bereich keine Querkraftgefährdung vorliegt.

Abbildung 8.6: Spannungszustand im Zustand I für Tandemlasten des LM1 im Abstand von 4 vom Auflager: (a) Spannungen an den Randfasern (b) Hauptspanungen und zulässige Hauptzugspannung $\sigma_{1,zul}$ =f_{ctd,eff}

Bereich C:

Eine Überprüfung der Querkraft V_{Ed} im gerissenen Bereich (x>5,4 m) mit dem Fachwerkmodell mit variabler Druckstrebenneigung θ gemäß Eurocode 2 [110, 111] zeigt, dass der Nachweis an dieser Stelle noch immer nicht erbracht werden kann, wobei das rechnerische Defizit bereits deutlich geringer ausfällt:

$$V_{Rd,s} = \frac{A_{s,w}}{s_{w}} \cdot z \cdot f_{ywd} \cdot \cot\theta = \frac{2,28}{20} \cdot 0,9 \cdot 1,83 \cdot 43,5 \cdot 2,5 = 2.042 \ kN < V_{Ed} = 2.569 kN$$

Abbildung 8.7 zeigt die Wirkungslinie der Druckgurtkraft und die Höhe der Nulllinie unter der Annahme einer Spannungsverteilung in der Druckzone gemäß Parabel-Rechteck Diagramm und der Gültigkeit der Bernoulli-Hypothese. Man kann erkennen, dass die Druckresultierende im Bereich zwischen x=5-6,5m geneigt ist und auch einen Beitrag zum Abtrag leisten kann. Für die Stelle x=5,4 ergibt sich die Vertikalkomponente V_{Fc} der Druckgurtkraft F_c zu

 $V_{Fc} = F_c \cdot \sin \alpha_c = 13.061 \cdot \sin 8.1^\circ = 1.840.3 \text{ kN}$

Addiert man diesen Traganteil V_{Fc} zum Querkraftwiderstand der Bügelbewehrung V_{Rd,s} kann die Querkrafttragfähigkeit erfüllt werden und es bedarf nicht der Anwendung des in Abschnitt 7.3.2 entwickelten Ansatz auf Basis der Querkrafttragfähigkeit der Druckzone. Der relativ hohe Traganteil der Vertikalkomponente des Druckgurtes resultiert zum einen auf der geringen Ausnutzung der rechnerischen Biegetragfähigkeit M_{Rd} und zum anderen auf dem relativ hohen Vorspanngrad σ_{cp} =4,9 N/mm². Bei einer Erhöhung der Biegebeanspruchung bzw. bei Spannbetonträgern mit einer geringeren Vorspannkraft kann der Druckgurt

bm

Abbildung 8.7: Angriffpunkt der Druckresultierenden F_c und Lage der Nulllinie unter der Annahme der Bernoulli-Hypothese und einer Spannungsverteilung in der Druckzone gemäß Parabel-Rechteck Diagramm

Die Querkrafttragfähigkeit des Randträgers der Sparchenbachbrücke konnte mit Hilfe der in Abschnitt 7.3.4.2 vorgeschlagenen Vorgehensweise bezüglich der Querkraftbemessung bei Spannbetonbrückenträgern mit nur geringer Schubbewehrung nachgewiesen werden.

8.4 Durchlass Seekirchen, km 300.238

Die Eisenbahnunterführung Seekirchen besteht aus einer einachsig gespannten Einfeldplatte mit einer Stützweite von 4,74 m. Das 1976 errichtete Plattentragwerk besitzt eine mittlere Höhe von 0,3m bei einer Breite von 4,83m. Gemäß Abbildung 4.1 war zum Zeitpunkt der Errichtung des Tragwerks die ÖNORM B 4200-8:1971 gültig.

8.4.1 Materialkennwerte

Das Tragwerk wurde mit einer Betongüte B400 hergestellt. Die Materialkennwerte ergeben sich in Anlehnung an die ONR 24008 [114] zu

 $f_{ck} = 26, 4 \text{ N/mm}^2$ $f_{ctm} = 3,16 \text{ N/mm}^2$ nach Gleichung 7.8

 $E_{cm} = 31900 \,\text{N/mm}^2$

Als Bewehrung wurde ein Rippentorstahl 50 (Klasse IV) verwendet, welcher folgende Festigkeiten aufweist

 $f_v = 500 \,\text{N/mm^2}$

 $E_s = 200.000 - 210.000 \,\mathrm{N/mm^2}$

8.4.2 Übersichts- und Bewehrungsskizzen

Abbildung 8.8: Durchlass Seekirchen - Ansicht

(a)

(3

(b)

7

AISIFII NIAIG bm

Abbildung 8.9: Durchlass Seekirchen - Bewehrungspläne: (a) Längsschnitt (b) Querschnitt (c) Positionen

8.4.3 Nachrechnung

8.4.3.1 Belastung

Bei der Ermittlung der Schnittgrößen wurden folgende Belastungen berücksichtigt:

- ständige Lasten
 - Eigengewicht der Konstruktion
 - Ausbaulasten
- Verkehrslasten (siehe Abbildung 8.10):
 - Streckenklasse D4 gemäß ÖNORM B 4003:1953 [132]
 - Lastmodell 71 mit α=1,21 gemäß ÖNORM EN 1991-2 [131] als Gleichlast q_{vk,ed}=189,1kN/m

Die Lasten wurden mit einem einheitlichen dynamischen Faktor unter der Annahme von sorgfältig instand gehaltenen Gleisen erhöht

•
$$\phi_2 = \frac{1,44}{\sqrt{L_{\phi}} - 0,2} + 0,82 = 1,54$$

8.4.3.2 Querkraftnachweis nach ÖNORM B4200-8:1971

Gemäß ÖNORM B4200-8:1971 [132] durfte auf eine Querkraftbewehrung bei Plattentragwerken verzichtet werden, wenn die zulässige Schubspannung $\tau_1 = 0.5 \text{ N/mm}^2$ bzw. τ_1' nicht überschritten wurde. Die zulässige Schubspannung τ_1' hängt vom Längsbewehrungsgrad der Zug- und Druckbewehrung sowie der verwendeten Materialen ab und ergibt sich für einen Beton B400 und Rippentorstahl T50 zu

$$\tau'_1 = 0.12 \cdot \sigma_p \cdot \sqrt{(w + w')w_g} = 0.12 \cdot 30 \cdot \sqrt{(0.1 + 0.03)0.22} = 0.61 \,\mathrm{N/mm^2}$$

mit

$$w = \frac{\mu \cdot \sigma_{e}^{*}}{\sigma_{p}} = \frac{0,006 \cdot 500}{30} = 0,10$$

$$w = \frac{\mu \cdot \sigma_{e}^{*}}{\sigma_{p}} = \frac{0,0018 \cdot 500}{30} = 0,03$$

$$w_{g} = \frac{2 \cdot \varepsilon_{p}}{3(\varepsilon_{p} + \varepsilon_{e}^{*})} = \frac{2 \cdot 0,002}{3(0,002 + 0,004)} = 0,22$$

In der ÖNORM B4200-8:1971 [132] wurde keine Reduktion für auflagernahe Lasten vorgesehen, weshalb die Querkraft Q unter Gebrauchslast direkt in der Auflagerachse für die Querkraftbemessung heranzuziehen war (siehe Abbildung 8.11). Unter der Festlegung einer Streckenklasse D4 beträgt die Schubspannung

$$\tau_0 = \frac{Q}{b \cdot z} = \frac{0,180}{1 \cdot 0,9 \cdot 0,26} = 0,77 \text{ N/mm}^2 > \max\left\{\tau_1; \tau_1'\right\} = \max\left\{0,5; 0,61\right\} = 0,61 \text{ N/mm}^2$$

Der Schubnachweis konnte in der Auflagerachse nicht erfüllt werden, weshalb die Position 2 (siehe Abbildung 8.9 (a)) aufgebogen wurde, um die fehlende Schubkraft aufnehmen zu können.

Abbildung 8.11: Umhüllende Querkraftlinie für eine Belastung gemäß Streckenklasse D4 und Darstellung der maßgebenden Querkräfte unter Gebrauchslast

Außerhalb des Wirkungsbereiches der Aufbiegung kann der Nachweis der zulässigen Schubspannung erfüllt werden

$$\tau_0 = \frac{Q}{b \cdot z} = \frac{0,150}{1 \cdot 0,9 \cdot 0,26} = 0,62 \text{ N/mm}^2 < \max\left\{\tau_1; \tau_1\right\} = \max\left\{0,5;0,81\right\} = 0,81 \text{ N/mm}^2$$

8.4.3.3 Querkraftnachweis nach ÖNORM EN 1992-1-1 und ÖNORM B 1992-1-1

In diesem Abschnitt wird der Querkraftnachweis gemäß der Stufe 1 der ONR 24008 [114] geführt. Dies bedeutet die Anwendung der aktuellen Verkehrslastmodelle in Kombination mit den derzeit gültigen Bemessungsregeln.

Im vorherigen Abschnitt 8.4.3.2 konnte gezeigt werden, dass der Durchlass Seekirchen den damaligen Normenstand entsprach. Aufgrund der Überschreitung der zulässigen Schubspannung am Auflager wurden die für die Momentendeckung nicht mehr benötigten Bewehrungsstäbe unter 45° aufgebogen. Das Fachwerkmodell mit variabler Druckstrebenneigung θ gemäß Eurocode 2 [108,110] (siehe Abschnitt 4.2.2.1) geht von einer über die Länge gleichmäßig verteilten Querkraftbewehrung aus, weshalb in diesem Fall, mit nur an einer Position vorhandene Aufbiegungen, Gleichung 2.26 in der Form nicht angewendet werden kann. Die Querkraft der Aufbiegung wird folgendermaßen abgeschätzt:

 $v_{Rd,s} = A_{sw} \cdot f_{vwd} = 17,5 \cdot 43,5 \cdot \sqrt{2} = 1073 \text{ kN/m} > v_{Ed} = 277 \text{ kN/m}$

Die Querkraft am Auflager kann über die Aufbiegung auch bei Anwendung der aktuellen Verkehrslastmodelle abgetragen werden.

Abbildung 8.12 zeigt die umhüllende Querkraftlinie für das Lastmodell 71 mit α =1,21. Dabei wurden die Achslasten in auflagernaher Laststellung mit dem Reduktionsfaktor β gemäß Gleichung 5.1 abgemindert.

Abbildung 8.12: Umhüllende Querkraftlinie für eine Belastung gemäß Lastmodell 71 mit α =1,21 und Bemessungsquerkraft

Da die Platte mit keiner verteilten Querkraftbewehrung ausgeführt wurde, muss auch die Stelle ab der die Aufbiegung nicht mehr wirksam ist, nachgewiesen werden. Dabei wird angenommen, dass sich eine unter 45° geneigte Druckstrebe noch auf die Aufbiegung abstützen kann (siehe Abbildung 8.13).

Abbildung 8.13: Kontrollschnitt für Bemessung ohne Aufbiegung

Die Querkrafttragfähigkeit gemäß der empirischen Gleichung 4.1 für Bauteile ohne Schubbewehrung ergibt sich zu

$$v_{Rd,c} = \max \begin{cases} \begin{bmatrix} C_{Rd,c} k (100\rho_l f_{ck})^{1/3} \end{bmatrix} b_w d = \begin{bmatrix} 0,12 \cdot 1,86 (1,29 \cdot 26,6)^{1/3} \end{bmatrix} \cdot 1 \cdot 0,27 \cdot 10^3 = 195,6 \text{ kN/m} \\ v_{\min} b_w d = 0,458 \cdot 1 \cdot 0,27 \cdot 10^3 = 123,7 \text{ kN/m} \end{cases}$$

mit

$$C_{Rd,c} = \frac{0.18}{\gamma_c} = \frac{0.18}{1.5} = 0.12$$

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{270}} = 1.86$$

$$\rho_l = \frac{a_{s,l}}{b \cdot d} = \frac{34.9}{100 \cdot 27} = 0.0129$$

$$v_{\min} = 0.035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} = 0.035 \cdot 1.86^{\frac{3}{2}} \cdot 26.6^{\frac{1}{2}} = 0.458 \text{ N/mm}^2$$

Der Querkraftnachweis kann im kritischen Schnitt am Ende der Wirksamkeit der aufgebogenen Stäbe (siehe Abbildung 8.13) mit dem Ansatz des Eurocode 2 [108,110] jedoch nicht erfüllt werden

 $v_{Rd,c} = 195,6 \text{ kN/m} < v_{Ed} = 221,0 \text{ kN/m}$

Die Platte kann das höhere Biegemoment aufgrund der Anwendung des Lastmodells 71 hingegen aufnehmen:

 $m_{Rd} = 373,1$ kNm/m > $m_{Ed} = 327,5$ kNm/m

8.4.3.4 Anwendung des eigenen Ansatzes

Der Nachweis muss wie in Abschnitt 7.2.3 erläutert auf Spannungsebene durchgeführt werden. Da die Einzellasten des LM71 als gleichmäßig verteilt über die Länge und Breite angenommen wurden, kann in diesem Fall der Ansatz verwendet werden. Wie in Abschnitt 7.2.1 erläutert, wird der Kontrollschnitt in einem Abstand von 2d vom Auflager gewählt

 $x_{crit} = 2 \cdot d = 2 \cdot 0, 27 = 0,54 \,\mathrm{m}$

Die Bemessungsschnittgrößen an dieser Stelle ergeben sich zu

$$m_{Ed} = 132 \text{ kNm/m}$$

$$v_{Ed} = 213 \, \text{kN/m}$$

Die Druckzonenhöhe c ergibt sich nach Gleichung 7.3 zu

$$c = \frac{6,3 \cdot 3.450}{1.000} \cdot \left(\sqrt{1 + \frac{2 \cdot 1.000 \cdot 270}{6,3 \cdot 3.450}} - 1\right) = 89 \,\mathrm{mm}$$

Der Maßstabsfaktor in Gleichung 7.10 berechnet sich zu

$$k_h = \left(\frac{300}{d}\right)^{0,2} = \left(\frac{300}{270}\right)^{0,2} = 1,02$$

Der Bemessungswert der einachsialen Zugfestigkeit fctd (Gleichung 7.22) beträgt

$$f_{ctd} = \alpha_{ct} \cdot \frac{f_{ctm}}{\gamma_c} = 1,00 \cdot \frac{3,16}{1,5} = 2,11 \text{ N/mm}^2$$

Nachweis auf Spannungsebene:

Die Normalspannung σ_x infolge Biegung errechnet sich gemäß linearer Spannungsverteilung auf halber Höhe der Druckzone vereinfacht zu

$$\sigma_{x,c/2} = -\frac{m_{Ed}}{z} \cdot \frac{1}{b \cdot c} = \frac{132 \cdot 10^6}{270 - \frac{89}{3}} \cdot \frac{1}{1000 \cdot 89} = -6, 2 \text{ N/mm}^2$$

Die maximale Schubspannung τ_{xz} in der Druckzone beträgt

bm

$$\tau_{xz} = \frac{3}{2} \cdot \frac{v_{Ed}}{b \cdot c} \cdot \frac{1}{k_{h}} = \tau_{xz} = \frac{3}{2} \cdot \frac{213 \cdot 10^{3}}{1000 \cdot 89} \cdot \frac{1}{1,02} = 3,52 \text{ N/mm}^{2}$$

Daraus ergeben sich in der Druckzone folgende Hauptspannungen (Gleichung 2.1)

$$\sigma_1 = \frac{-6.2}{2} + \sqrt{\frac{(-6.2)^2}{4} + 3.52^2} = 1.6 \text{ N/mm}^2$$
$$\sigma_2 = \frac{-6.2}{2} - \sqrt{\frac{(-6.2)^2}{4} + 3.52^2} = -7.8 \text{ N/mm}^2$$

Auf Basis des zweiachsialen Spannungszustandes ergibt sich folgende zulässige Hauptzugspannung

$$\sigma_{1,zul} = f_{ctd,eff} = \left(1, 6 - 0, 2 \cdot f_{ck}^{\frac{1}{3}} + 0, 6 \cdot \frac{\sigma_2}{f_{ck}}\right) \cdot f_{ctd} = \left(1, 6 - 0, 2 \cdot 26, 4^{\frac{1}{3}} + 0, 6 \cdot \frac{-7, 8}{26, 4}\right) \cdot 2, 11 = 1,75 \text{ N/mm}^2$$

Somit kann der Querkraftnachweis im Bemessungsschnitt erfüllt werden

 $\sigma_{1,zul} = f_{ctd,eff} = 1,75 \text{ N/mm}^2 > \sigma_1 = 1,6 \text{ N/mm}^2$

Um die maximale aufnehmbare Querkraft $v_{Rd,c}$ nun zu erhalten, müsste die Belastung soweit gesteigert werden, bis die einwirkende Hauptzugspannung σ_1 der zulässigen Spannung $\sigma_{1,zul} = f_{ctd,eff}$ entspricht. Somit ergibt sich der maximale Querkraftwiderstand $v_{Rd,c}$ zu 230kN/m.

Berechnung der maximalen Querkraftragfähigkeit v_{Rd,c} auf Schnittgrößenebene:

Um die maximale Querkrafttragfähigkeit v_{Rd,c} zu erhalten, kann auch Gleichung 7.9 verwendet werden. Da eine direkte M-V Interaktion mit in die Berechnung einbezogen wird, kann diese jedoch nur durch eine iterative Berechnung ermittelt werden, welche nachfolgend durchgeführt wird.

Im ersten Schritt wird die tatsächliche Belastung $q_d = 117 \text{ kN/m}^2$ angenommen. Daraus folgt die maximal aufnehmbare Schubspannung $\tau_{xz,max}$ nach Gleichung 7.9 mit der Bemessungszugfestigkeit f_{ctd} und der charakteristischen Zylinderdruckfestigkeit f_{ck} zu

$$\tau_{xz,\max} = \sqrt{\left(\frac{1,6\cdot 2,11-0,2\cdot 26,4^{\frac{1}{3}}\cdot 2,1-\frac{-6,2}{2}\cdot\left(1-0,6\cdot\frac{2,1}{26,4}\right)}{1+0,6\cdot\frac{2,1}{26,4}}\right)^2 - \frac{\left(-6,2\right)^2}{4} = 3,71 \text{ N/mm}^2}$$

Somit ergibt sich der Querkraftwiderstand zu v_{Rd,c} zu

$$v_{Rd,c} = \frac{2}{3} \cdot b \cdot c \cdot k_h \cdot \tau_{xz,\max} = \frac{2}{3} \cdot 1000 \cdot 89 \cdot 1,02 \cdot 3,71 \cdot 10^3 = 224,5 \text{ kN/m}$$

Da die berechnete Querkrafttragfähigkeit $v_{Rd,c}$ =224,5 kN/m über der einwirkenden Querkraft v_{Ed} = 213 kN/m liegt, ist die maximale Schubtragfähigkeit somit noch nicht erreicht. Somit wird die Belastung in einem zweiten Iterationsschritt auf q_d =125 kN/m erhöht, wodurch sich folgende Bemessungsschnittgrößen ergeben:

 $m_{Ed} = 141 \,\mathrm{kNm/m}$

$$v_{Ed} = 228 \text{ kN/m}$$

Durch eine Berechnung der Normalspannung σ_x infolge Biegung kann die maximal aufnehmbare Schubbspannung erneut berechnet werden

$$\tau_{xz,\max} = \sqrt{\left(\frac{1,6\cdot 2,11-0,2\cdot 26,4^{\frac{1}{3}}\cdot 2,1-\frac{-6,6}{2}\cdot\left(1-0,6\cdot\frac{2,1}{26,4}\right)}{1+0,6\cdot\frac{2,1}{26,4}}\right)^2 - \frac{\left(-6,6\right)^2}{4}} = 3,78 \text{ N/mm}^2$$

Daraus resultiert ein Querkraftwiderstand von $v_{Rd,c}$ = 229 kN/m. Konvergenz ist bei einer Belastung von q_d =125,9 kN/m erreicht, wodurch sich eine Querkrafttragfähigkeit von $v_{Rd,c}$ = 230 kN/m ergibt.

Die Querkrafttragfähigkeit konnte mit dem hier entwickelten Ansatz zwar knapp nachgewiesen werden, es muss jedoch klar festgehalten werden, dass Plattenbrücken ohne Querkraftbewehrung eine deutliche Querkraftgefährdung aufweisen und in Zukunft sicher einer sorgfältigen Überwachung bedürfen.

8.5 Brixenbachbrücke, km 171.504

Bei der Brixenbachbrücke handelt es sich um eine schiefwinklige einfeldrige Plattenbrücke aus dem Jahre 1977 mit einem Kreuzungswinkel von 49,4°. Die Platte verfügt über eine konstante Höhe von h=0,6m und einer Breite von b=4,45m. Die mittlere Stützweite beträgt 7,85m. Die Lager wurden, wie üblich bei Brücken mit kurzen Spannweiten, als Betonlager ausgeführt

8.5.1 Materialkennwerte

Das Tragwerk wurde mit einer Betongüte B300 hergestellt. Die Materialkennwerte ergeben sich in Anlehnung an die ONR 24008 [114] zu

 $f_{ck} = 17,8 \text{ N/mm}^2$ $f_{ctm} = 2,0 \text{ N/mm}^2$

 $E_{cm} = 29200 \,\mathrm{N/mm^2}$

AISIFIIINIAIG bmV

Als Bewehrung wurde ein Rippentorstahl 50 (Klasse IV) verwendet, welche folgende Festigkeit aufweist

 $f_v = 500 \,\text{N/mm^2}$

 $E_s = 200.000 - 210.000 \,\mathrm{N/mm^2}$

8.5.2 Übersichts- und Bewehrungsskizzen

Abbildung 8.14: Brixenbachbrücke - Ansicht

Abbildung 8.15: Brixenbachbrücke - Bewehrungspläne: (a) Längsschnitt (b) Querschnitt **Belastung**

8.5.3 Nachrechnung

8.5.3.1 Belastung

Bei der Ermittlung der Schnittgrößen wurden folgende Belastungen berücksichtigt:

bm

- ständige Lasten
 - Eigengewicht der Konstruktion
 - Ausbaulasten
- Verkehrslasten (siehe Abbildung 8.10):
 - Streckenklasse D4 gemäß ÖNORM B 4003:1953 [132]
 - Lastmodell 71 mit α=1,21 gemäß ÖNORM EN 1991-2 [131]

Die Lasten wurden mit einem einheitlichen dynamischen Faktor unter der Annahme von sorgfältig instand gehaltenen Gleisen erhöht

$$\phi_2 = \frac{1,44}{\sqrt{L_{\phi}} - 0,2} + 0,82 = 1,37$$

Für die Lasten gemäß ÖNORM EN 1991-2 [131] wurde auf einen Ersatz der Einzellasten Q_{vk} =250 kN durch eine gleichmäßige Linienlast q_{vk} =156 kN/m zurückgegriffen.

8.5.3.2 Querkraftnachweis nach ÖNORM B4200-8:1971

Gemäß ÖNORM B4200-8:1971 [132] durfte auf eine Querkraftbewehrung bei Plattentragwerken verzichtet werden, wenn die zulässige Schubspannung $\tau_1 = 0,4 \text{ N/mm}^2$ bzw. τ'_1 nicht überschritten wurde. Die zulässige Schubspannung τ'_1 hängt vom Längsbewehrungsgrad der Zug- und Druckbewehrung sowie der verwendeten Materialen ab und ergibt sich für einen Beton B300 und Rippentorstahl T50 zu

$$\tau_1' = 0,12 \cdot \sigma_p \cdot \sqrt{(w+w')w_g} = 0,12 \cdot 22,5 \cdot \sqrt{(0,2+0,021)0,22} = 0,6 \text{ N/mm}^2$$

mit

$$w = \frac{\mu \cdot \sigma_e^*}{\sigma_p} = \frac{0,0089 \cdot 500}{22,5} = 0,20$$

$$w = \frac{\mu \cdot \sigma_e^*}{\sigma_p} = \frac{0,00094 \cdot 500}{22,5} = 0,021$$

$$w_g = \frac{2 \cdot \varepsilon_p}{3(\varepsilon_p + \varepsilon_e^*)} = \frac{2 \cdot 0,002}{3(0,002 + 0,004)} = 0,22$$

In Platten treten bei Anwendung der Elastizitätstheorie Singularitäten bei Ermittlung der Querkräfte überall dort auf, wo die Krümmungen unendlich groß sind. Dies trifft bei schiefwinkligen Platten in den stumpfen Ecken auf, wo die Hauptquerkräfte $v_0 = \sqrt{v_x^2 + v_y^2}$ gegen unendlich streben (siehe Abbildung 8.16). Für die baupraktischen Belange sind solche Spannungsspitzen jedoch von untergeordneter Bedeutung, da sich diese durch Rissbildung

AISIFIINIAIG bm

$$\tau_0 = \frac{Q}{b \cdot z} = \frac{0,260}{1 \cdot 0,9 \cdot 0,54} = 0,53 \,\text{N/mm}^2 < \max\left\{\tau_1;\tau_1'\right\} = \max\left\{0,4;0,60\right\} = 0,60 \,\text{N/mm}^2$$

Der Schubnachweis ist somit in der Auflagerachse erfüllt, weshalb auf eine Schubbewehrung verzichtet wurde. Darüber hinaus wurde richtigerweise in der stumpfen Ecke eine zusätzliche Nadelbewehrung angeordnet.

Abbildung 8.16: Hauptquerkräfte vo für eine Belastung gemäß Streckenklasse D4

8.5.3.3 Querkraftnachweis nach ÖNORM EN 1992-1-1 und ÖNORM B 1992-1-1

In diesem Abschnitt wird der Querkraftnachweis gemäß der Stufe 1 der ONR 24008 [114] geführt. Dies bedeutet die Anwendung der aktuellen Verkehrslastmodelle in Kombination mit den derzeit gültigen Bemessungsregeln.

Abbildung 8.17: Umhüllende Hauptquerkräfte vo für eine Belastung gemäß Lastmodell 71

Die Querkrafttragfähigkeit gemäß der empirischen Gleichung 4.1 für Bauteile ohne Schubbewehrung ergibt sich zu

bm

$$v_{Rd,c} = \max\left\{ \begin{bmatrix} C_{Rd,c} k (100\rho_l f_{ck})^{1/3} \end{bmatrix} b_w d = \begin{bmatrix} 0,12 \cdot 1,6(0,95 \cdot 17,8)^{1/3} \end{bmatrix} \cdot 1 \cdot 0,54 \cdot 10^3 = 266 \text{ kN/m} \right\}$$

$$v_{\min} b_w d = 0,3 \cdot 1 \cdot 0,54 \cdot 10^3 = 162 \text{ kN/m}$$

mit

$$C_{Rd,c} = \frac{0,18}{\gamma_c} = \frac{0,18}{1,5} = 0,12$$

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{560}} = 1,60$$

$$\rho_l = \frac{a_{s,l}}{b \cdot d} = \frac{53,1}{100 \cdot 56} = 0,0095$$

$$v_{\min} = 0,035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} = 0,035 \cdot 1,60^{\frac{3}{2}} \cdot 17,8^{\frac{1}{2}} = 0,30 \text{ N/mm}^2$$

Der Querkraftnachweis kann im Abstand d vom Auflager am Ende mit dem Ansatz des Eurocode 2 [108,110] deutlich nicht erfüllt werden

 $v_{Rd,c} = 266 \,\mathrm{kN/m} < v_{Ed} = 620 \,\mathrm{kN/m}$

Die einwirkende Querkraft wurde dabei über die schiefe Breite der Platte gemittelt. Die Gleichung zur Ermittlung der Schubtragfähigkeit gemäß Eurocode 2 [108,110] wurde anhand von einer Vielzahl von Querkraftversuche an Einfeldbalken empirisch ermittelt. Inwieweit die Schubtragfähigkeit von schiefwinkligen Plattentragwerken damit prognostiziert werden kann, ist versuchstechnisch nicht abgesichert. Auf die Anwendung des eigenen Ansatzes wird deshalb verzichtet.

Die Platte kann das höhere Biegemoment aufgrund der Anwendung des Lastmodells 71 hingegen aufnehmen:

 $m_{Rd} = 1119, 1$ kNm/m > $m_{Ed} = 846$ kNm/m

9 ZUSAMMENFASSUNG

Die Zustandserfassung und –bewertung bestehender Brückentragwerke gewinnt an Bedeutung und wird immer mehr zum Kerngeschäft der täglichen Ingenieurpraxis. Dabei spielt die rechnerische Querkrafttragfähigkeit von Stahlbeton- und Spannbetonbrücken eine wesentliche Rolle. Aufgrund des gestiegenen Verkehrsaufkommens sowie der drastischen Zunahme im Transit- und Güterverkehr in den letzten Jahrzehnten kam es zu einer signifikanten Erhöhung auf der Einwirkungsseite, welche in diesem Ausmaß kaum vorhersehbar war. Zusätzlich zu der veränderten Situation auf der Einwirkungsseite kam es in den letzten Jahrzehnten auch zu permanenten Modifikationen der Bemessungsnormen (siehe Abbildung 4.1), wobei die Regeln zur Bestimmung der Querkrafttragfähigkeit besonders betroffen waren.

Während für die Biegebemessung mit dem Ebenbleiben der Querschnitte schon früh eine sehr einfache und weltweit-akzeptierte Theorie gefunden werden konnte, existiert eine solche für die Bestimmung der Querkrafttragfähigkeit nach über 100 Jahren Forschung noch nicht. Die Literaturstudie zeigte, dass man sich zwar über die möglichen Mechanismen zum Abtrag der Querkräfte einig ist, aufgrund des komplexen Zusammenspiels der einzelnen Tragwirkungen und des Auftretens zu verschiedenen Belastungszeitpunkten wird deren Bedeutung für das Schubtragvermögen jedoch äußert kontrovers diskutiert. Diese Uneinigkeit hat dazu geführt, dass inzwischen eine Vielzahl von Modellen existiert, welche einen oder mehreren Tragmechanismen die maßgebende Abtragung der Querkraft zuspricht. Dabei muss jedoch stets eine klare Trennung zwischen Bauteilen mit und ohne Schubbewehrung vorgenommen werden, da sich das Tragverhalten durch eine Anordnung einer vertikalen Bewehrung wesentlich ändert. In diesem Bericht wurde ein Überblick über die einzelnen Tragmechanismen gegebenen und die wesentlichen Modellansätze übersichtlich dargestellt.

Eine Parameterstudie bezüglich des Querkraftwiderstandes gemäß der verschiedenen internationalen Normenwerke spiegelt diese Kontroverse wieder, da zwischen den einzelnen Bemessungsnormen zum Teil erhebliche Unterschiede erkennbar waren. Die derzeit gültigen und für den Neubau angedachten Querkraftbemessungsregeln des Eurocode 2 [108, 109, 110, 111] sind im Vergleich zu den bereits zurückgezogenen alten österreichischen Normen zum Teil erheblich konservativer angesetzt. Ein Normenvergleich konnte zeigen, dass dies zum einen die Ansätze für die Bestimmung der Querkraftbewehrung für vorgespannte Brückentragwerke und zum anderen die Querkraftbemessungsregeln für Plattenbrücken und Fahrbahnplatten in Querrichtung ohne Schubbewehrung betrifft. Es konnte

Im Zuge dieses Forschungsvorhabens wurde somit der Fokus auf die Erstellung eines neuen Querkraftmodells gelegt, mit welchen die Schubtragfähigkeit von Bauteilen ohne und mit geringem Querkraftbewehrungsgrad rechnerisch bestimmt werden kann. Um dies zu bewerkstelligen, wurde in einem ersten Schritt die Verfügbarkeit einer Datenbasis an passenden Versuchsergebnissen geprüft. Da die Verfügbarkeit der existierenden Datenbanken oft nicht gegeben war und die Qualität vieler dieser Versuchssammlungen nicht den gewünschten Anforderungen entsprach, entschloss man sich eigene Querkraftversuche an Einfeldsystemen zu sichten und in einer Datenbank zu sammeln. Zum derzeitigen Stand beinhaltet die in verschiedene Teildatenbanken unterteilte Datensammlung circa 750 Versuchsergebnisse. Die gesammelten Versuchsergebnisse stellten die Basis für alle weiteren durchgeführten Arbeiten dar.

Ein Vergleich der experimentellen Bruchlasten mit der nach Eurocode 2 ermittelten Querkrafttragfähigkeit [108, 109, 110, 111] zeigte, dass gerade im Bereich geringer Schubbewehrungsgrade zum Teil erhebliche Tragreserven sowohl für Stahlbetonbauteile als auch für Spannbetonträger vorhanden sind. Das Fachwerkmodell mit variabler Druckstrebenneigung θ gemäß Eurocode 2 ist nicht in der Lage, dass Tragverhalten von Bauteilen mit geringer Schubbewehrung zur Gänze zu beschreiben.Im Rahmen dieser Erstellung musste man leider jedoch feststellen, dass gerade im Bereich des Spannbetons nur sehr wenige brauchbare Ergebnisse vorhanden sind und hier eindeutig noch einiges an Forschungsarbeit notwendig sein wird. Des Weiteren gibt es nur eine Handvoll Experimente an Durchlaufsystemen.

Aufbauend auf der Literaturstudie und den Querkraftdatenbanken widmete man sich der Untersuchung des Einflusses der Laststellung und der Lastart auf die Schubtragfähigkeit. Durch Vergleiche mit Versuchsdaten wurde gezeigt, dass der Laststellung und somit der M-V Interaktion eine wesentliche Rolle in der Beschreibung des Querkrafttragverhaltens zugesprochen werden muss. Ebenso wurde der Fragestellung nachgegangen, wie mit der Lastausbreitung punktueller Belastungen bei flächenhaften Bauteilen umgegangen werden kann. Es wurden mehrere Vorschläge angeführt, welche man im Zuge einer Nachrechnung gemäß aktuellem Normenstand [108, 109, 110, 111] abgesichert anwenden könnte, um somit höhere rechnerische Schubtragfähigkeit zu erzielen.

In einem weiteren Arbeitspaket wurde der Fokus auf die Untersuchung des Einflusses einer Vorspannung auf den Querkraftwiderstand gelegt. Es konnte belegt werden, dass eine adäquate Vorspannung die Rissbildung im Schubfeld günstig beeinflusst, was sich wiederum positiv auf die Querkrafttragfähigkeit auswirkt. Durch den eingebrachten Eigenspannungszustand infolge Vorspannung wird die Rissbildung in der Regel verzögert, weshalb eine theoretische Querkraftgefährdung erst bei deutlich höheren Belastungen auftreten kann. Dies wiederum hängt natürlich wesentlich von der Höhe der Vorspannung, den geometrischen Abmessungen und den Materialfestigkeiten ab. Bei moderater Vorspannung wird darüber hinaus der direkte Lastabtrag über ein Sprengwerk deutlich begünstigt. Aufgrund der fehlenden Datenbasis konnten die getätigten Aussagen nur zum Teil experimentell abgesichert werden.

Begleitet wurden sämtliche Arbeiten mit numerischen Berechnungen auf Basis der nichtlinearen Finite – Elemente Methode. Dabei konnte festgestellt werden, dass die hier untersuchten Einflüsse, welche auf Basis von Versuchsergebnissen abgeleitet wurden, nur zum Teil numerisch wiedergegeben werden konnten. Die im Zuge dieses Forschungsvorhabens angestellten numerischen Berechnungen konnten nur Anhaltspunkte liefern und können keinen Ersatz für die Erkenntnisse aus experimentellen Untersuchungen darstellen.

Der Hauptteil dieses Forschungsvorhaben lag auf der Erstellung eines Berechnungsmodells für die Bestimmung der Querkrafttragfähigkeit von Bauteilen mit geringer und ohne Schubbewehrung:

Aufbauend auf der Annahme, dass im Bruchzustand keine Spannungen mehr über Risse hinweg übertragen werden können, wurde für die Bestimmung der Schubtragfähigkeit von Bauteilen ohne Querkraftbewehrung der Ansatz gewählt, dass die ungerissene Druckzone maßgebend für den Abtrag von Querkräften verantwortlich sein muss. Es wurde angenommen, dass der in der Druckzone entstehende zweiachsiale Spannungszustand bei Erreichen der Bruchfestigkeit das Versagen einleitet. Daher wurde auf Basis von Druck-Zug-Versuchen eine neue zweiachsiale Bruchhypothese abgeleitet, bei welcher die Querdruck-empfindlichkeit der Zugfestigkeit f_{ct} bei höherer Druckfestigkeit f_c zunimmt. Die Querkrafttragfähigkeit V_{R,c} gilt als erreicht, wenn die Hauptzugspannung σ_1 in der Druckzone der effektiven Zugfestigkeit f_{ct.eff} = $\sigma_{1,zul}$ entspricht. Ein Vergleich mit den Versuchsergebnissen aus der Datenbank konnte zeigen, dass mit dem hergeleiteten Ansatz eine sehr gute Übereinstimmung erzielt werden konnte.

Das Querkrafttragverhalten von Bauteilen mit nur geringer Schubbewehrung unterscheidet sich wesentlich von dem von Bauteilen ohne vertikaler Bewehrung. Bauteile mit geringer

Bügelbewehrung sind dadurch gekennzeichnet, dass es im Bruchzustand zu einer Dehnungslokalisierung in einem "sogenannten" kritischen Schubriss kommt, welcher sich um mehrere Millimeter öffnet. Die Rissverzahnung kann in diesem Fall mit Sicherheit nur eine sehr untergeordnete Bedeutung zukommen. Die Querkrafttragfähigkeit lässt sich somit auf derselben Überlegung wie für Bauteile ohne vertikaler Bewehrung beschreiben, wobei einige Modifikationen vorgenommen werden müssen. Durch die deutliche Rissöffnung kommt es im Bruchzustand zu einer größeren Schubrotation, wodurch die Druckzone c bei Belastung weit über die Schubrisslast $V_{s,cr}$ bereits deutlich eingeschnürt wird. Deshalb wurde der Ansatz gewählt, die Druckzonenhöhe c in Abhängigkeit des vorherrschenden Dehnungszustandes in der Längsbewehrung ε_s abzumindern. Die Querkrafttragfähigkeit V_R von Bauteilen mit geringer Schubbewehrung setzt sich somit aus einem von der Schubrissneigung θ_{cr} abhängigen Traganteil der Bügelbewehrung V_{R,s} und von einem auf der Tragkapazität der Druckzone basierenden Betontraganteil V_{R,c} zusammen. Ein Vergleich mit Versuchsergebnisse konnte auch in diesem Fall den gewählten Ansatz bestätigen.

Die neu entwickelte Modellvorstellung behält auch für die Beschreibung der Schubtragfähigkeit von Spannbetonträgern mit geringer Schubbewehrung seine Gültigkeit, wobei die Bestimmung der Druckzonenhöhe c in Abhängigkeit der Momenten-Normalkraft Interaktion zu erfolgen hat, wodurch sich die Berechnung deutlich verkompliziert. Darüber hinaus fehlt die Datenbasis um den Ansatz auch für Spannbetonträger eindeutig absichern zu können. Nichtsdestotrotz wurde für den Querkraftnachweis von Spannbetonträgern eine bereits von Bachmann et al. [71] vorgeschlagene Vorgehensweise aufgegriffen, bei welcher die Bemessung in verschiedenen Bereichen zu erfolgen hat. In einer Zone, welche frei von Biegerissen bleibt, kann ein Hauptzugspannungsnachweis durchgeführt werden, welcher auf der neu entwickelten zweiachsialen Bruchhypothese basiert. In Bereichen, bei welchen an der Zugseite f_{ctd} überschritten wird, kann der hier entwickelte Ansatz mit einem zusätzlichen Betontraganteil V_{R,c}, welcher auf dem Querkrafttragvermögen der Druckzone beruht, angewendet werden.

Im Zuge der Nachrechnung von realen bestehenden Eisenbahn- und Straßenbrücken konnte die Anwendbarkeit des im Rahmen dieses Forschungsvorhabens erstellten Ansatzes für schubunbewehrte Platten und Spannbetonträger mit geringer Schubbewehrung gezeigt werden. Derzeit ist der Ansatz jedoch nur für Einfeldsysteme abgesichert, inwieweit sich dieses Querkrafttragverhalten auch im Stützbereich von Durchlaufsystemen ausbilden kann, bedarf es weiterer theoretischer Überlegungen und experimenteller Untersuchungen.

LITERATURVERZEICHNIS

- Huber, P., Schweighofer A., Brunner, H., Karigl, W. und Kollegger J. (2012): Vergleich der rechnerischen Querkrafttragfähigkeit von Bestandsbrücken nach Eurocode 2 und fib Model Code 2010, Beton- und Stahlbetonbau, 107 (7), S. 451-462.
- [2] Huber, P. und Kollegger, J. (2014): Numerical simulation of shear behavior of reinforced concrete beams with and without flanges, In N. Bićanić, R. de Borst, H. Mang, and G. Meschke (Eds.), Computational modelling of concrete structures, Balkema.
- [3] Walraven, J. C. (1980): Aggregate Interlock: A theoretical and experimental analysis, Dissertation, Delft University.
- [4] Bažant, Z.P. und Gambarova, P.G. (1980): Rough crack models in reinforced concrete, Journal of Structural Engineering, ASCE, 106(4), S. 819-842.
- [5] Gambarova P.G. und Karakoç C. (1983): A new approach to the analysis of the confinement role in regularly cracking concrete elements, Trans. 7th Struct. Mech. in Reactor Tech., S. 251-261.
- [6] Fenwick, R.C. und Paulay T. (1968): Mechanisms of shear resistance of concrete beams, Journal of the Structural Division, ASCE, 94(10), S. 2235-2350.
- [7] Muttoni, A. und Fernández Ruiz, M., (2008): Shear strength of members without transverse reinforcement as function of critical shear crack width, ACI Structural Journal, 105(2), S. 163-172.
- [8] Bentz, E. C., Vecchio, F. J. und Collins, M. P., (2006): Simplified modified compression field theory for calculating shear strength of reinforced concrete elements, ACI Structural Journal, 103(4), S. 614-624.
- [9] Sagaseta, J. und Vollum, R.L. (2011): Influence of aggregate fracture on shear transfer through cracks in reinforced concrete, Magazine of Concrete Research, 63(2): S.119–137.
- [10] Krefeld, W. und Thurston, Ch. W. (1966): Contribution of longitudinal steel to shear resistance of reinforced concrete beams. ACI Journal, 63(3): S. 325–344.
- [11] Dei Poli, S., Di Prisco, M. und Gambarova, P. (1992): Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete, ACI Structural Journal, 89(6), S. 665–675.

- [13] Walther, R. (1962): Über die Berechnung der Schubtragfähigkeit von Stahl- und Spannbetonbalken – Schubbruchtheorie, Beton- und Stahlbetonbau, 57 (11), S. 261-271.
- [14] Tureyen, A.K. und Frosch, R.J. (2003): Concrete shear strength: Another perspective, ACI Structural Journal, 100 (5), S. 609-615.
- [15] Park, H.G, Choi, K.K und Wight K (2006): Strain-based shear strength model for slender beams without web reinforcement, ACI Structural Journal, 103 (6), S. 783-793.
- [16] Zink, M. (2000): Zum Biegeschubversagen schlanker Bauteile aus Hochleistungsbeton mit und ohne Vorspannung. Dissertation, Universität Leipzig
- Zararis, P.D. und Papadakis G.C. (2001): Diagonal shear failure and size effect in RC beams without web reinforcement, Journal of Structural Engineering, 127 (7), S. 733-742.
- [18] Kotsovos M.D. (1988): Compressive force path concept Basis for reinforced concrete ultimate limit state design, ACI Journal, 85 (1), S. 68-75.
- [19] Khuntia, M. und Stojadinovic, B. (2001): Shear strength of reinforced concrete beams without transverse reinforcement, ACI Structural Journal, 98 (5), S. 648-656.
- [20] Leonhardt, F. und Walther, R. (1962): Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung; Deutscher Ausschuss für Stahlbeton, Heft 151, Ernst u. Sohn, Berlin.
- [21] Kani G. (1967): How safe are our large concrete beams?, ACI Journal, 64 (3): S.128-141.
- [22] Lubell, A., Sherwood, T., Bentz, E. C. and Collins, M. P. (2004): Safe shear design of large wide beams, Concrete International, 26 (1), S. 66-78.
- [23] Bažant, Z. P., und Kim, J.-K., (1984): Size effect in shear failure of longitudinally reinforced beams, ACI Journal, 81 (5), S. 456-468.
- [24] Kani, G. (1964): The riddle of shear failure and its solution, ACI Journal, 61 (4), S.441
- [25] Schlaich, J. und Schäfer, K. (1989): Konstruieren im Stahlbetonbau; Betonkalender 1989, Teil II, Ernst & Sohn, Berlin.

- [26] Muttoni, A., Schwartz, J. und Thürlimann, B. (1997): Bemessung von Betontragwerken mit Spannungsfeldern, Birkhäuser Verlag, Basel.
- [27] Vecchio, F. J. und Collins, M. P. (1986): The modified compression field theory for reinforced concrete elements subjected to shear, ACI Journal, 83 (2), S. 219-231
- [28] Ritter, W. (1899): Die Bauweise Hennebigue, Schweizerische Bauzeitung, Vol. 33/34, S. 41-43/49-52/59-61.
- [29] Mörsch, E. (1908): Der Eisenbetonbau - Seine Theorie und Anwendung, 3.Auflage, Verlag von Konrad Wittwer, Stuttgart.
- [30] Remmel, G. (1994): Zum Zug- und Schubtragverhalten von Bauteilen aus hochfestem Beton, Deutscher Ausschuss für Stahlbeton, Heft 444, Beuth Verlag, Berlin.
- [31] Hillerborg, A. (1983): Analysis of one single crack, Fracture Mechanics of Concrete, Elsevier Science Publishers B.V., S. 223-249.
- [32] Zsutty, T.C. (1968): Beam shear strength prediction by analysis of existing data, ACI Journal, 65 (11), S.943-951
- [33] Campana, S., Fernández Ruiz, M., Anastasi, A. und Muttoni, A. (2013): Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics, Magazine of Concrete Research, Vol. 56 (6), S. 386-404.
- [34] Reineck, K.-H. (1990): Ein mechanisches Modell für den Querkraftbereich von Stahlbetonbauteilen, Dissertation Universität Stuttgart.
- [35] Bažant Z. P. und Yu Q. (2005): Design against size effects on shear strength of reinforced concrete beams without stirrups; I Formulation; ASCE Journal of Structural Engineering, 131 (12), S. 1877-1885.
- Bažant, Z.P. (1984): Size effect in blunt fracture: Concrete, Rock, Metal, Journal [36] of Engineering Mechanics, 110 (4), S. 518-535.
- [37] Specht, M. und Scholz, H. (1995): Ein durchgängiges Ingenieurmodell zu Bestimmung der Querkrafttragfähigkeit im Bruchzustand von Bauteilen mit und ohne Vorspannung, Deutscher Ausschuss für Stahlbeton, Heft 453, Beuth Verlag, Berlin.
- [38] Hars, E. (2006): Zum Querkraftwiderstand von Stahl- und Spannbetonträgern mit dünnen Stegen, Dissertation, IBETON, EPFL.
- [39] Kupfer, H. (1964): Erweiterung der Mörsch'schen Fachwerkanalogie mit Hilfe des Prinzips vom Minimum der Formänderungsarbeit, Comité Euro-International du Béton (CEB), Bulletin d'Information, No. 40, S. 44-57, Paris.

- [41] Nielsen, M. P., Braestrup, M. W. und Bach, F. (1978): Rational Analysis of Shear in Reinforced Concrete Beams, IABSE Colloquium Proceedings, P-15, Vol. 2, Bergamo.
- [42] Kaufmann, W. und Marti, P. (1998): Structural concrete: cracked membrane model, Journal of Structural Engineering, 124 (12), S. 1467-1475.
- [43] Sigrist, V. (2011): Generalized stress field approach for analysis of beams in shear, ACI Structural Journal, 108 (4), S. 479-487.
- [44] Sigrist, V. und Hackbarth, B. (2010): Querkrafttragfähigkeit von Stahlbetonträgern, Beton – und Stahlbetonbau, 105 (11), S. 686-694.
- [45] Sigrist, V., Bentz, E. C., Fernández Ruiz, M., Foster, S. J. und Muttoni, A. (2013):
 Background to the Model Code 2010 Shear Provisions Part I: beams and slabs, Structural Concrete, 14 (3), S. 195-203.
- [46] Rupf, M. (2014): Querkraftwiderstand von Stahlbeton- und Spannbetonträgern mittels Spannungsfeldern, Dissertation, IBETON, EPFL.
- [47] Sigrist, V. (1995): Zum Verformungsvermögen von Stahlbetonträgern, Institut für Baustatik und Konstruktion, Dissertation, ETH Zürich.
- [48] Muttoni, A. und Fernández Ruiz, M. (2012): Levels-of-approximation approach in codes of practice, Structural Engineering International, Vol. 2, S. 190-194.
- [49] Fernández Ruiz, M., Muttoni, A. und Burdet, O. (2007): Computer-aided development of stressfields for the analysis of structural concrete, fib Symposium 2007, S. 591-598, Dubrovnik.
- [50] Reineck, K.-H. (2001): Hintergründe zur Querkraftbemessung in DIN 1045-1 für Bauteile aus Konstruktionsbeton mit Querkraftbewehrung, Bauingenieur, 76 (4), S. 168-179.
- [51] Leonhardt, F. (1965): Die verminderte Schubdeckung bei Stahlbetontragwerken, Bauingenieur, 40 (1), S. 1-15.
- [52] Hegger, J. und Görtz, St. (2006): Querkraftmodell für Bauteile aus Normalbeton und Hochleistungsbeton, Beton und Stahlbetonbau, 101 (9), S. 695-705.
- [53] Görtz, St. (2004): Zum Schubrissverhalten von Stahlbeton- und Spannbetonbalken aus Normal- und Hochleistungsbeton, Dissertation, RWTH Aachen.

- [54] König, G., Dehn, F., Hegger, J. und Görtz, St. (2000): Zum Einfluss der Rissreibung auf die Querkrafttragfähigkeit, Beton – und Stahlbetonbau, 95 (10), S. 584-591
- [55] Reineck, K.,H., Kuchma, D.,A. und Fitik, B. (2012): Erweiterte Datenbanken zur Überprüfung der Querkraftbemessung für Konstruktionsbetonbauteile mit und ohne Bügel, Deutscher Ausschuss für Stahlbeton, Heft 597, Berlin.
- [56] Reineck, K.H., Bentz, E.C., Fitik, B., Kuchma, D.A. and Bayrak O. (2013): ACI-DAfStb Database of shear tests on slender reinforced concrete beams without stirrups, ACI Structural Journal, 110(5), S.867-875.
- [57] Nakamura, E. (2011): Shear database for prestressed concrete members, Master Thesis, University of Texas.
- [58] Collins, M.P., Bentz, E.C. und Sherwood, E.G. (2008): Where is shear reinforcement required? Review of research results and design procedures, ACI Structural Journal, 105 (5), S. 590-600.
- [59] Yu, Q. und Bažant Z.P. (2011): Can stirrups suppress size effect on shear strength of RC beams?, ASCE, Journal of Structural Engineering, 137 (5), S. 607-617.
- [60] Hegger, J., König, G, Zilch, K., Reineck, K.-H., Görtz, St., Beutel, R., Schenck, G., Kliver, J., Dehn, F. und Staller, M. (1999): Überprüfung und Vereinheitlichung der Bemessungsansätze für querkraftbeanspruchte Stahlbeton- und Spannbetonbauteile aus normalfesten und hochfestem Beton nach DIN 1045-1, Abschlussbericht DIBt-Forschungsvorhaben IV 1-5-876/98, Aachen.
- [61] Mihaylov, B.I., Bentz, E.C. und Collins, M.P. (2013): Two-parameter kinematic theory for shear behaviour of deep beams, ACI Structural Journal, 110 (3), S. 447-455.
- [62] Zilch, K. und Zehetmaier, G. (2009): Bemessung im konstruktiven Betonbau, Springer Verlag, 2.Auflage.
- [63] König, G. und Fischer, J. (1995): Model uncertainties of design equations for the shear capacity of concrete members without Shear Reinforcement. CEB Bulletin 224, Lausanne.
- [64] ACI-ASCE Committee 326 (1962): Shear and diagonal tension, Journal of the American Concrete Institute, Proceedings, 59 (1, 2, 3), S. 1-30, S. 277-334, S. 352-396.

- [65] MacGregor, J. G. und Hanson, J. M. (1969): Proposed changes in shear provisions for reinforced and prestressed concrete beams, ACI Journal, 66(4), S. 276-288.
- [66] Leonhardt, F., Koch, R. und Rostasy F. (1973): Schubversuche an Spannbetonträgern, Deutscher Ausschuss für Stahlbeton, Heft 227, Berlin.
- [67] Hegger, J. und Reißen, K. (2013): Querkrafttragfähigkeit von Fahrbahnplatten, Berichte der Bundesanstalt für Straßenwesen, H. B93.
- [68] Vaz Rodrigues R., Fernández Ruiz M. und Muttoni A. (2008): Shear strength of R/C bridge cantilever slabs, Engineering structures, 30 (11), S. 3024-3033.
- [69] Rombach, G. Latte, S. und Steffens, R. (2009): Querkrafttragfähigkeit von Fahrbahnplatten ohne Querkraftbewehrung, Forschung Straßenbau und Straßenverkehrstechnik, Heft 1011.
- [70] Kupfer, H. B.: Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter besonderer Berücksichtigung der zweiachsigen Beanspruchung, Deutscher Ausschuss für Stahlbeton, Heft 229, Berlin.
- [71] Bachmann, H. und Thürlimann, B. (1966): Schubbemessung von Balken und Platten aus Stahlbeton mit Spannzulagen und Spannbeton, Schweizerische Bauzeitung, 84 (33), S. 583-591 und 84 (34), s. 599-606.
- [72] Yoshida, Y. (1998): "Shear reinforcement for large lightly reinforced concrete members, Diplomarbeit, University of Toronto.
- [73] Walraven, J. und Lehwalter, N. (1994): Size effects in short beams loaded in shear," ACI Structural Journal, V. 91 (5), S. 585-593.
- [74] Sherwood, E. (2008): One-way shear behavior of large, lightly reinforced concrete beams and slabs, Dissertation, University of Toronto.
- [75] Grasser, E.; Thielen, G. (1991): Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken, Deutscher Ausschuss für Stahlbeton, Heft 240, Beuth Verlag GmbH, Berlin.
- [76] Rombach, G. und Velasco, R. (2005): Schnittgrößen auskragender Fahrbahnplatten infolge von Radlasten nach DIN-Fachbericht; Beton- und Stahlbetonbau, 100 (5): S. 376-384.
- [77] Sozen, M. A.; Zwoyer, E. M. und Siess, C. P. (1959): Strength in shear of beams without web reinforcement, University of Illinois, Bulletin No. 452, 56 (62).

- [78] Caflisch, R. und Thürlimann, B. (1970): Schubversuche an teilweise vorgespannten Betonbalken, Institut für Baustatik und Konstruktion, ETH Zürich, Bericht Nr. 6504-2, 177 p., Zürich.
- [79] MacGregor, J.G., Sozen, M.A. und Siess, Ch. P. (1960): Effect of draped reinforcement on behavior of prestressed concrete beams, ACI Journal, 32 (6), S. 649-677
- [80] Kizitan, H. (2012): Zum Einfluss des Druckbogens auf den Schubwiderstand von Spannbetonbalken, Dissertation, TU Dortmund.
- [81] Vill, M., Schweighofer, A. und Kollegger, J. (2012): Großversuche an Spannbetonbrückenträgern zur Beurteilung des Schubtragverhaltens, Beton- und Stahlbetonbau, 107 (2), S. 86-95.
- [82] Vill, M., Torghele, H., Brunner, H. und Kollegger, J. (2011): Zerstörende Belastungsversuche zur Untersuchung des Schubtragverhaltens von vorgespannten Trägern einer Straßenbrücke, Beton- und Stahlbetonbau, 106 (4), S. 241-249.
- [83] Huber, P., Schweighofer, A. und Kollegger, J. (2013): Shear strength of over 50 years old posttensioned concrete bridge girders, fib-Symposium Tel-Aviv, Proceedings, S.273-276.
- [84] Moayer, M. und Regan, P.E. (1974): Shear strength of prestressed and reinforced concrete T-beams, ACI, SP 42, S. 183-214.
- [85] Červenka, J., Jendele, L., Červenka, V. (2013). ATENA program documentation, Cervenka Consulting, www.cervenka.cz.
- [86] Mier J.G.M van (1986): Multiaxial strain-softening of concrete, Part I: fracture, Materials and Structures, RILEM, Vol. 19, No.111.
- [87] Hordijk, D.A. (1991): Local approach to fatigue of concrete, Dissertation, Delft University of Technology.
- [88] Kupfer, H., Hilsdorf, H.K., Rüsch, H. (1969): Behavior of concrete under biaxial stress, ACI Journal, 66 (8), S. 656-666.
- [89] Kolmar, W. (1986): Beschreibung der Kraftübertragung über Risse in nichtlinearen Finite-Element-Berechnungen von Stahlbetontragwerken, Dissertation, TU Darmstadt.
- [90] Fischer J. (1997): Versagensmodell für schubschlanke Balken; Deutscher Ausschuss für Stahlbeton, Heft 480, Beuth Verlag, Berlin.
- [91] Huber, P. et al. (2014): Ingenieurmodell, Verkehrsinfrastrukturforschung 2012, Zwischenbericht.

- [92] Huber, T. (2014): Versuche zum Querkrafttragverhalten von Stahlbetonträgern mit und ohne Schubbewehrung, Diplomarbeit, TU Wien (noch nicht veröffentlicht).
- [93] Hampel, T. (2006): Experimentelle Analyse des Tragverhaltens von Hochleistungsbeton unter mehraxialer Beanspruchung, Dissertation, TU Dresden.
- [94] Hussein, A. (1998): Behavior of high-strength concrete under biaxial loading conditions, Dissertation, Memorial University of Newfoundland.
- [95] Kani, G. (1966): Basis facts concerning shear failure, ACI Journal, 63 (6), S. 675-692.
- [96] Leonhardt, F. und Walther, R. (1962): Versuche an Plattenbalken mit hoher Schubbeanspruchung, Deutscher Ausschuss für Stahlbeton, Heft 152, Berlin.
- [97] Placas, A. und Regan, P.E. (1971): Shear failure of reinforced concrete beams, ACI Journal, 68 (10), S. 763-773
- [98] Kollegger, J. und Mehlhorn, G. (1990): Experimentelle Untersuchungen zur Bestimmung der Druckfestigkeit des gerissenen Stahlbetons bei einer Querzugbeanspruchung, Deutscher Ausschuss für Stahlbeton, Heft 413, Berlin.
- [99] Herbrand, M. und Hegger, J.: Experimentelle Untersuchungen zum Einfluss einer externen Vorspannung auf die Querkrafttragfähigkeit vorgespannter Durchlaufträger, Bauingienieur, 88 (12), S. 509 – 517.
- [100] Comité Euro-International du Béton (CEB) (1990): CEB-FIP Model Code 1990, Bulletin d'Information, No 213-214; Thomas Telford Services, London.
- [101] fib (2013): fib Model code for concrete structures 2010. International Federation for Structural Concrete. Ernst & Sohn.
- [102] CSA Committee A23.3-04 (2004): Design of concrete structures, Canadian Standards Association, Mississauga, Kanada.
- [103] AASHTO LRFD (2010): Bridge design specifications and commentary, 5.Ausgabe, American Association of State Highway Transportation Officials, Washington, DC, USA.
- [104] ACI 318M-11 (2011): Building code requirements for structural concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA.
- [105] SIA 262 (2013): Betonbau, Schweizer Ingenieur- und Architektenverein, Zürich, Schweiz.
- [106] DIN EN 1992-1-1 (2011): Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und

Regeln für den Hochbau. Deutsche Fassung EN 1992-1-1: 2004 + AC:2010, Beuth Verlag GmbH, Berlin.

- [107] DIN EN 1992-1-1 (2011): Nationaler Anhang National festgelegte Parameter Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Beuth Verlag GmbH, Berlin.
- [108] ÖNORM EN 1992-1-1 (2011): Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Austrian Standards Institute, Wien.
- [109] ÖNORM B 1992-1-1 (2011): Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Nationale Festlegungen zu ÖNORM EN 1992-1-1; nationale Erläuterungen und nationale Ergänzungen, Austrian Standards Institute, Wien.
- [110] ÖNORM EN 1992-2 (2012): Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 2: Betonbrücken — Bemessungs- und Konstruktionsregeln, Austrian Standards Institute, Wien.
- [111] ÖNORM B 1992-2 (2014): Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 2: Betonbrücken — Bemessungs- und Konstruktionsregeln, Nationale Festlegungen zu ÖNORM EN 1992-2; nationale Erläuterungen und nationale Ergänzungen, Austrian Standards Institute, Wien.
- [112] NF EN 1992-1-1/NA (2007): Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, AFNOR, Paris.
- [113] DIN 1045-1 (2001): Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion, Berlin.
- [114] ONR 24008 (2014): Bewertung der Tragfähigkeit bestehender Eisenbahn- und Straßenbrücken, Österreichisches Normungsinstitut, Wien.
- [115] ÖNORM B 4200-4:1957 (1957), Stahlbetontragwerke Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.
- [116] ÖNORM B 4200-8:1969 (1969), Stahlbetontragwerke Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.
- [117] ÖNORM B 4200-8:1971 (1971), Stahlbetontragwerke Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.

AISIFIINIAIG bmV

- [118] ÖNORM B 4200-8:1979 (1979), Stahlbetontragwerke Berechnung und Ausfüh-
- rung I, Österreichisches Normungsinstitut, Wien.
- [119] ÖNORM B 4200-8:1996 (1996), Stahlbetontragwerke Berechnung und Ausführung (I), Österreichisches Normungsinstitut, Wien.
- [120] ÖNORM B 4202:1958 (1958), Berechnung und Ausführung der Tragwerke Massivbau – Straßenbrücken, Österreichisches Normungsinstitut, Wien
- [121] ÖNORM B 4202:1975 (1975), Massivbau Straßenbrücken, Österreichisches Normungsinstitut, Wien.
- [122] ÖNORM B 4203:1963 (1963), Berechnung und Ausführung der Tragwerke Massivbau – Eisenbahnbrücken, Österreichisches Normungsinstitut, Wien.
- [123] Ergänzende Bestimmungen zur ÖNORM B 4203 (1976): Herausgegeben von Österreichische Bundesbahnen, Wien.
- [124] ÖNORM B 4700:1995 (1995): Stahlbetontragwerke EUROCODE-nahe Berechnung, Bemessung und konstruktive Durchbildung, Österreichisches Normungsinstitut, Wien.
- [125] DIN 4227 (1953): Spannbeton Richtlinien für Bemessung und Ausführung, Deutsches Institut für Normung, Berlin.
- [126] BMV-Richtlinie (1966): Zusätzliche Bestimmungen zu DIN 4227 f
 ür Br
 ücken aus Spannbeton, Bundesministerium f
 ür Verkehr/Hauptverwaltung der Deutschen Bahn, Bonn.
- [127] ÖNORM B 4252:1975 (1975): Spannbeton-Straßenbrücken Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.
- [128] ÖNORM B 4253:1989 (1989): Spannbeton-Eisenbahnbrücken Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.
- [129] ÖNORM B 4250:1989 (1989): Spannbetontragwerke (ausgenommen Eisenbahnbrücken) – Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.
- [130] ÖNORM B 4250:1991 (1991): Spannbetontragwerke (ausgenommen Eisenbahnbrücken) – Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.
- [131] ÖNORM EN 1991-2 (2004): Eurocode 1: Einwirkungen auf Tragwerke Teil 2: Verkehrslasten auf Brücken, Österreichisches Normungsinstitut, Wien.

[132] ÖNORM B 4003 (1956): Eisenbahn- und Straßenbahnbrücken - Allgemeine Grundlagen für die Berechnung und Ausführung, Österreichisches Normungsinstitut, Wien.

O AISIFII NIAIG bm

ABBILDUNGSVERZEICHNIS

Abbildung 1.1: Altersstruktur österreichischer Eisenbahn- und hochrangiger Straßenbrücken [1]9
Abbildung 1.2: Erhöhung der Verkehrslasten: (a) Zunahme des zulässigen Gesamtgewichts gemäß KFG (b) Vergleich der einwirkenden Querkraft auf einfeldrigen Eisenbahnbrücken gemäß D4 und LM71
Abbildung 2.1: Hauptspannungen eines ungerissenen Stahlbetonbauteiles und Mohr'scher Spannungskreis
Abbildung 2: Querkrafttraganteile13
Abbildung 2.3: Biegeschubversagen13
Abbildung 2.4: Rissverzahnung nach Walraven [3]: (a) Risskinematik (b) Kontaktflächen zwischen Zementmatrix und Gesteinskörnung (c) Spannungszustand
Abbildung 2.5: Rissverzahnung: Schub- und Normalspannung τ_{cr} , σ_{cr} in Abhängigkeit von Rissgleitung Δ_{cr} und Rissöffnung w _{cr} gemäß des vereinfachten Modells nach Walraven [3]
Abbildung 2.6: Dübelwirkung der Längsbewehrung: (a) Dübelriss und Bettungsspannungen (b) Betonzugspannungen auf Höhe der Längsbewehrung
Abbildung 2.7: Querkrafttraganteil der Druckzone: (a) in der Literatur angenommen Spannungsverteilungen (b) Vertikalkomponente einer geneigten Druckgurtkraft
Abbildung 2.8: Maßstabseffekt bei Bauteilen ohne Querkraftbewehrung (entnommen aus [91])
Abbildung 2.9: Formelapparat der Modified Compression Field Theory (entnommen aus [27])
Abbildung 2.10: Theorie des kritischen Biegeschubrisses: Bemessungsschnitt und Annahme der Längsdehnungen24
Abbildung 2.11: Modell nach Zink: Spannungen in der Druckzone
Abbildung 2.12: Fachwerkmodell nach Ritter [28]28
Abbildung 2.13: Versagensarten bei Bauteilen mit Querkraftbewehrung

Abbildung 4.6: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen mit Schubbewehrung ohne Vorspannung für geringe Bügelbewehrungsgrade ρ_w gemäß EC2, MC2010 LoA III und Mörsch'schen Fachwerk: (a) ϵ_x =0,001 (b) ϵ_x =0,00271

Abbildung 4.8: Parameterstudie: Querkrafttragfähigkeit bei Bauteilen mit Schubbewehrung mit Vorspannung für geringe Bügelbewehrungsgrade ρ_w gemäß EC2, MC2010 LoA III und Mörsch'sche Fachwerk: (a) ϵ_x =0,000 (b) ϵ_x =0,000572

Abbildung 4.10: Vergleich der zulässigen Schubspannungen τ_{Rd} in Abhängigkeit der charakteristischen Druckfestigkeit f_{ck} österreichischer Betonbaunormen seit 1950......74

bm

Abbildung 4.20: Potentiell querkraftgefährdete Brückentypen: (a) vorgespannte Hohlkastenbrücke mit sehr schwacher Querkraftbewehrung (b) vorgespannte Plattenbalkenbrücke mit sehr schwacher Querkraftbewehrung (c) Plattenbrücke ohne Querkraftbewehrung (d) Fahrbahnplatten in Querrichtung ohne Querkraftbewehrung90

Abbildung 5.1: Experimentelle Untersuchung des Einflusses der Laststellung von Leonhardt und Walther [20]: (a) Ausnützungsgrad der Biegetragfähigkeit in Abhängigkeit der Schubschlankheit a/d: "Schubtal nach Kani" (b) Rissbildung nach dem Querkraftversagen und theoretische Druckstrebe für a/d = 1,5 und 4,091

Abbildung 5.12: Querkraftanteil der geneigten Druckkraft bei gevouteten Bauteilen103

Abbildung 5.14: Überschneidung der effektiven Breite beff,v bei mehreren Radlasten.....106

Abbildung 5.15: Vergleich der experimentellen und rechnerischen Querkrafttragfähigkeit von Fahrbahnplatten ohne Schubbewehrung für verschiedene mitwirkende Plattenbreiten und Normenwerke ohne Berücksichtigung der Vertikalkomponente v_{cc} der geneigten Druckgurtkraft: (a) EC2, DAfStB Heft 240 (b) EC2, 45° vom Lastzentrum (c) EC2, 45° von Außenkante Lasteinleitung (d) EC2, Rombach [76] (e) EC2, Hegger [67] (f) MC2010 ... 108

Abbildung 5.17: Einfluss der Vorspannung auf die Rissbildung – Versuchsserie Zink [16]

AISIFIINIAIG bm

Abbildung 7.8: Entwicklung des Rissbildes von schubschlanken Balken mit unterschiedlichen Querschnittshöhen für verschiedene bezogene Schubspannungen τ =Q/bd – Bauteilhöhe für Vergleichszwecke skaliert (entnommen aus [91])......148

Abbildung 7.9: Rissbilder von Versuchen von Leonhardt und Walther [20] an Bauteilen ohne Schubbewehrung und großer Schubschlankheit a/d – Abhängigkeit der Druckzonenhöhe c

Abbildung 7.10: Lage des kritischen Schubrisses im Schubfeld anhand von Rissbildern aus Versuchen von Leonhardt und Walther [20] an Bauteilen ohne Schubbewehrung mit

Abbildung 7.11: Schubtal nach "Kani" – Darstellung der Schubbruchgefährdung in Abhängigkeit der Schubschlankheit a/d und des Längsbewehrungsgrades pl (entnommen aus [95]).....151

Abbildung 7.12: Vergleich von Gleichung 7.11 mit Versuchsergebnissen: (a) mit Punktlast (b) mit Gleichlast......152

Abbildung 7.13: Vergleich von Gleichung 7.11 mit experimentellen Bruchlasten für verschiedene Einflussparameter: (a) Geometrie Versuchsträger und Belastung (b) statische Höhe d (c) Betondruckfestigkeit f_c (d) Schubschlankheit a/d (e) Längsbewehrungsgrad ρ_l (f) Größtkorndurchmeser d_g (g) Schlankheit I/d.....153

Abbildung 7.14: Vergleich der Rissbilder von Bauteilen mit und ohne Schubbewehrung für verschiedene Querschnittstypen (entnommen aus [91])157

Abbildung 7.15: Über die Mörsch'sche Fachwerkwirkung hinausgehende experimentelle Tragreserven für verschiedene Querschnittstypen in Abhängigkeit von (a) mechanischer Abbildung 7.16: Erforderliche Druckstrebenneigung θ zur Abtragung der gesamten Querkraft über die Bügelbewehrung......158 Abbildung 7.17: Schubrisse für verschiedene Bügelbewehrungsgrade pw nach Versuche Abbildung 7.18: Experimentelle Rissneigung $\theta_{cr,exp}$: (a) Definition der Rissneigung (b) $\theta_{cr,exp}$ Abbildung 7.19: Experimentelle Rissneigung $\theta_{cr,exp}$ in Abhängigkeit der Dehnung in der Abbildung 7.20: Modellannahmen Schubfeldmodell für Bauteile mit geringer Schubbewehrung (a) Frei-Körperdiagramm entlang des maßgebenden Schubrisses (b) Abbildung 7.22: Verhältnis der experimentellen Bruchlasten V_{Exp} zur rechnerischen Querkrafttragfähigkeit in Abhängigkeit des Bügelbewehrungsgrades ρ_{w} : (a) V_R nach eigenem Ansatz nach Gleichung 7.20 (b) ÖNORM EN 1992-1-1 [108] +ÖNORM B 1992-1-Abbildung 8.3: Spanngliedverlauf für Trägerhälfte170 Abbildung 8.4: Schnittgrößen infolge ständiger Lasten und Verkehrslastmodell 1 mit Laststellung der Radlasten 2d vom Auflager entfernt: (a) Querkraftlinie (b) Abbildung 8.5: Schnittgrößen infolge ständiger Lasten und Verkehrslastmodell 3 (Sonderfahrzeugte) mit Laststellung der Radlasten 2d vom Auflager entfernt: (a)

OAISIFIINIAIG bmV

Abbildung 8.6: Spannungszustand im Zustand I für Tandemlasten des LM1 im Abstand von
4 vom Auflager: (a) Spannungen an den Randfasern (b) Hauptspanungen und zulässige
Hauptzugspannung $\sigma_{1,zul}$ =f _{ctd,eff} 175
Abbildung 8.7: Angriffpunkt der Druckresultierenden F _c und Lage der Nulllinie unter der Annahme der Bernoulli-Hypothese und einer Spannungsverteilung in der Druckzone gemäß Parabel-Rechteck Diagramm
Abbildung 8.8: Durchlass Seekirchen - Ansicht177
Abbildung 8.9: Durchlass Seekirchen - Bewehrungspläne: (a) Längsschnitt (b) Querschnitt (c) Positionen
Abbildung 8.10: Verwendete Lastmodelle: (a) D4 (b) LM71179
Abbildung 8.11: Umhüllende Querkraftlinie für eine Belastung gemäß Streckenklasse D4 und Darstellung der maßgebenden Querkräfte unter Gebrauchslast
Abbildung 8.12: Umhüllende Querkraftlinie für eine Belastung gemäß Lastmodell 71 mit α=1,21 und Bemessungsquerkraft181
Abbildung 8.13: Kontrollschnitt für Bemessung ohne Aufbiegung
Abbildung 8.14: Brixenbachbrücke - Ansicht
Abbildung 8.15: Brixenbachbrücke - Bewehrungspläne: (a) Längsschnitt (b) Querschnitt Belastung
Abbildung 8.16: Hauptquerkräfte v_0 für eine Belastung gemäß Streckenklasse D4187
Abbildung 8.17: Umhüllende Hauptquerkräfte vo für eine Belastung gemäß Lastmodell 71

ANHANG A – Literaturverzeichnis der Querkraftdatenbanken STB ohne Querkraftbewehrung mit Punktlast und Rechteckquerschnitt

- Huber, P. (2011): Verstärken von Brücken mit einer statisch mitwirkenden Aufbetonschicht, Diplomarbeit, Technische Universität Wien.
- Leonhardt, F. und Walther, R. (1962): Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Deutscher Ausschuss für Stahlbeton, Heft 151, Berlin.
- Angelakos, D., Bentz, E.C. und Collins, M.P. (2001): Effect of concrete strength and minimum stirrups on shear strength of large members", ACI Structural Journal, 98 (3), S.290-300.
- Bhal, N. S. (1968): Über den Einfluss der Balkenhöhe auf die Schubtragfähigkeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Dissertation, Universität Stuttgart.
- Campana, S., Fernández Ruiz, M., Anastasi, A. und Muttoni, A. (2013): Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics, Magazine of Concrete Research, Vol. 56 (6), S. 386-404.
- Elzanaty, A.H., Nilson, A.H. und Slate, F.O. (1986): Shear capacity of reinforced concrete beams using high-strength concrete, ACI Journal, 83 (2), S. 290-296.
- Cladera, A. und Mari, A.R. (2005): Experimental study on high-strength concrete beams failing in shear, Engineering Structures, 27 (10), S. 1519-1527.
- Collins, M.P. and Kuchma, D. (1999): How safe are our large, lightly reinforced concrete beams, slabs, and footings?, ACI Structural Journal, 96 (4), S. 482-490.
- Taylor, H.P.J. (1972): Shear strength of large beams, Journal of the Structural Division, ASCE, 98 (11), S. 2473-2489.
- Grimm, R. (1997): Einfluss bruchmechanischer Kenngrößen auf das Biege- und Schubtragverhalten hochfester Betone, Deutscher Ausschuss für Stahlbeton, Heft 477, Berlin.
- Mphonde, A.G. und Frantz, G.C. (1985): Shear tests of high- and low-strength concrete beams with stirrups, ACI Special Publication, SP-87, S. 179-196.
- Yoon, Y.-S., Cook, W.D., Mitchell, D. (1996): Minimum shear reinforcement in normal, medium and high-strength concrete beams, ACI Structural Journal, 93 (5), S. 576-584.
- Krefeld, W.J., und Thurston, C.W. (1966): Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams, ACI Journal, 63 (4), S. 451-476.

- Chana, P.S. (1981): Some aspects of modelling the behaviour of reinforced concrete under shear loading, Cement and Concrete Association Technical Report No. 543. C&CA, Wexham Springs, Großbritannien.
- Kani, M.W., Huggins, M.W. und Wittkopp, R.R. (1979): Kani on shear in reinforced concrete, University of Toronto Press, Toronto, Kanada.
- Ehmann, J. (2003): Querkrafttragfähigkeit zugbeanspruchter Stahlbetonplatten in Verbundbrücken, Dissertation, ILEK, Universität Stuttgart.
- Sagaseta, J. (2008): The influence of aggregate fracture on the shear strength of reinforced concrete beams, Dissertation, Imperial College London.
- Walraven, J. und Lehwalter, N. (1994): Size effects in short beams loaded in shear, ACI Structural Journal, V. 91 (5), S. 585-593.
- Aster, H. und Koch, R. (1974): Schubtragfähigkeit dicker Stahlbetonplatten, Beton und Stahlbetonbau, 69 (11), S. 266-270.
- Sherwood, E. (2008): One-way shear behavior of large, lightly reinforced concrete beams and slabs, Dissertation, University of Toronto.
- Huber, P. et al. (2014): Ingenieurmodell, Verkehrsinfrastrukturforschung, Zwischenbericht (unveröffentlicht).
- Marti, P. (2005): Versuche zum Querkraftwiderstand und zum Verformungsvermögen von Stahlbetonplatten, IBK Bericht Nr. xx, ETH Zürich.
- Yoshida, Y. (1998): Shear reinforcement for large lightly reinforced concrete members, Diplomarbeit, University of Toronto.

STB ohne Querkraftbewehrung mit Gleichlast und Rechteckquerschnitt

- Leonhardt, F. und Walther, R. (1962): Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Deutscher Ausschuss für Stahlbeton, Heft 151, Berlin.
- Shioya, T. (1989): Shear properties of large reinforced concrete member, Special Report of Institute of Technology, Shimizu Corporation, Nr. 25.
- Shioya, T., Iguro, M., Nojiri, Y., Akiyama, H. und Okada, T. (1989): Shear strength of large reinforced concrete beams, Fracture Mechanics: Application to Concrete, SP 118, American Concrete Institute.
- Rüsch, M., Haugli, O. und Mayer, M. (1962): Schubversuche an Stahlbeton-Rechteckbalken mit gleichmäßig verteilter Belastung, Deutscher Ausschuss für Stahlbeton, Heft 145, S.1-30, Berlin.

bm

- Feldman, A. und Siess, C.P. (1955): Effect of moment shear ratio on diagonal tension cracking and strength in shear of reinforced concrete beams, Univ. of Illinois Civil Eng. Studies, Struct. Research Series No. 107.
- Padilla, P.L. (2009): Influencia de la distribucion de la carga en la capacidad resitente a cortante en elementos sin armadura transversal esudio teorico y experimental (in Spanisch), Disseratation, Universidad Politecnica de Madrid.
- Caldentey, A.P., Padilla, P., Muttoni, A. und Fernandez, M.R. (2012): Effect of load distribution and variable depth on shear resistance of slender beams without stirrups, ACI Structural Journal, 109 (5), S. 595 – 603.

 Tabelle A.1: Literaturliste und untersuchte Einflussparameter – Stahlbetonbalken ohne

 Querkraftbewehrung und mit Rechteckquerschnitt

Autor	Jahr	Anzahl	Untersuchte Parameter									
			ρι	b _w	d	f _c	a/d	dg	ns	Ν	L	
Punktlast												
Huber, Berger und Kollegger	2011	2										
Leonhardt und Walther	1962	19			х		х		х			
Angelakos und Bentz	2001	7	х			х						
Bhal und Leonhardt	1968	8			х				х			
Campana, et al.	2013	4	х									
Elzanaty, Nilson und Slate	1986	11	х			х	х					
Cladera und Mari	2005	6				х						
Collins und Kuchma	1999	24			х	х						
Taylor	1972	5			х			х				
Grimm	1997	14	х		х	х						
Mphonde und Frantz	1985	9	х			х						
Yoon, Cook and Mitchell	1996	3				х						
Krefeld und Thurston	1966	74	х		х	х	х					
Chana	1981	27			х	х		х				
Kani	1979	111	х	х	х	х	x					
Ehmann	2003	29	х			х	х			х		
Sagaseta	2008	4				х					х	
Walraven und Lehwalter	1994	6			х						х	
Aster und Koch	1974	5	х		х							
Sherwood	2008	19			х	х		х				
Huber und Kollegger	2014	3			х							
Marti	2005	4	х		х							
Yoshida und Bentz	1998	1										
	Σ	394										
Gleichlast												
Leonhardt und Walther	1962	13	Х				Х					
Shioya, Iguro, et al.	1989	5			х			х				
Rüsch und Haugli	1962	6										
Feldmann und Siess	1955	4	х				х					
Padilla	2009	5	х		х							
Caldentey et al.	2012	2										
-	Σ	35										

SPB ohne Querkraftbewehrung mit Punktlast und Rechteckguerschnitt

- Kar, J. N. (1969): Shear strength of prestressed concrete beams without web reinforce-• ment, Magazine of Concrete Research, 21(68), S.159-170.
- Sozen, M. A.; Zwoyer, E. M. und Siess, C. P. (1959): Strength in shear of beams without • web reinforcement, University of Illinois, Bulletin No. 452, 56 (62).
- Zink, M. (2000): Zum Biegeschubversagen schlanker Bauteil aus Hochleistungsbeton mit und ohne Vorspannung, Dissertation, Universität Leipzig.
- Sagan, E.I. und Frosch, R.J. (2009): Influence of flexural reinforcement on shear • strength of prestressed concrete beams, ACI Structural Journal, 106 (1), S.60-68.
- Zwoyer, E. M. (1953): Shear strength of simply supported prestressed concrete beams, Dissertation, University of Illinios.

Tabelle A.2: Literaturliste und untersuchte Einflussparameter – Spannbetonbetonbalken ohne Querkraftbewehrung und mit Rechteckquerschnitt

Autor	Jahr	Anzahl	Untersuchte Parameter							
			ρ	P/A	d	f c	a/d	dg	ρι	
Kar	1969	15	Х	х			х			
Sozen, Zwoyer und Siess	1959	38		х		х	х	х		
Zink	2000	6	х	х	х			х		
Saqan und Frosch	2009	9	х						х	
Zwoyer	1953	34	х	х		х	х	х		
	Σ	102								

STB mit Querkraftbewehrung mit Punktlast

- Cladera, A. und Mari, A.R. (2005): Experimental study on high-strength concrete beams failing in shear, Engineering Structures, 27 (10), S. 1519-1527.
- Bhal, N. S. (1968): Über den Einfluss der Balkenhöhe auf die Schubtragfähigkeit von • einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Dissertation, Universität Stuttgart.
- Krefeld, W.J., und Thurston, C.W. (1966): Studies of the shear and diagonal tension • strength of simply supported reinforced concrete beams, ACI Journal, 63 (4), S. 451-476.
- Angelakos, D., Bentz, E.C. und Collins, M.P. (2001): Effect of concrete strength and • minimum stirrups on shear strength of large members, ACI Structural Journal, 98 (3), S.290-300.
- Johnson, M. K. und Ramirez, J. A. (1989): Minimum shear reinforcement in beams with higher strength concrete, ACI Structural Journal, V. 86 (4), S.376-382.
- Yoon, Y.-S., Cook, W.D., Mitchell, D. (1996): Minimum shear reinforcement in normal, medium and high-strength concrete beams, ACI Structural Journal, 93 (5), S. 576-584.
- Campana, S., Fernández Ruiz, M., Anastasi, A. und Muttoni, A. (2013): Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics, Magazine of Concrete Research, Vol. 56 (6), S. 386-404.
- Ozcebe, G., Ersoy, U. und Tankut, T. (1999): Evalution of minimum shear reinforcement. requirements for higher strength concrete. ACI Structural Journal, 96(3), S.361-369.
- Yoshida, Y. (1998): Shear reinforcement for large lightly reinforced concrete members, Diplomarbeit, University of Toronto.
- Higgins, C., Miller, T.H., Rosowsky, D.V., Yim, S.C., Potisuk, T., Daniels, T.K., Nicholas, B.S., Robelo, M.J., Lee, A.Y. und Forrest, R.W. (2004): Assessment methodology for diagonally cracked reinforced concrete deck girders, Final Report for Oregon Department of Transportation and the Federal Highway Administration, Final Report SPR 350, SR 500-091.
- Tompos, E.J. und Frosch, R.J. (2002): Influence of beam size, longitudinal reinforcement and stirrups effectiveness on concrete shear strength, ACI Structural Journal, 99(5), S. 559-567.
- Regan, P.E. (1971): Shear in reinforced concrete an experimental study, CIRIA-Report Nr. 4.

- Huber, P. et al. (2014): Ingenieurmodell, Verkehrsinfrastrukturforschung, Zwischenbericht (unveröffentlicht).
- Bresler, B. und Scordelis, A.C. (1963): Shear strength of reinforced concrete beams, ACI Journal, 60 (1), S. 51-74.
- Sherwood, E. (2008): One-way shear behavior of large, lightly reinforced concrete beams and slabs, Dissertation, University of Toronto.
- Moayer, M. und Regan, P.E. (1974): Shear strength of prestressed and reinforced concrete T-beams, ACI, SP 42, S. 183-214.
- Sörensen, H. C. (1974): Shear test on 12 Reinforced Concrete T-Beams, Structural Research Laboratory, Bericht Nr. R 60, Technical University of Denmark.
- Leonhardt, F. und Walther, R. (1962): Schubversuche an Plattenbalken mit untershchiedlicher Schubbewehrung, Deutscher Ausschuss für Stahlbeton, Heft 152, Berlin.

Autor	Jahr	Anzahl	Untersuchte Parameter									
			ρι	ρ _w	d	f _c	a/d	b _{fc}	b _w	h _{fc}		
Cladera und Mari	2002	12	х	Х								
Bhal und Leonhardt	1968	4			х							
Krefeld und Thurston	1966	7				х						
Angelakos und Bentz	2001	5	х			х						
Johnson und Ramirez	1989	7		х		х						
Yoon, Cook and Mitchell	1996	9		х		х						
Campana, et al.	2013	4	х									
Ozcebe, Ersoy und Tankut	1999	12	х	х		х	х					
Yoshida und Bentz	1998	2		х								
Higgins et al.	2004	7		х								
Tompos und Frosch	2002	4		х								
Regan	1971	49	х	х		х	х	х	х	х		
Huber und Kollegger	2014	6			х			х				
Bresler und Scordelis	1963	9	х	х		х	х					
Sherwood und Bentz	2008	2			х							
Moayer und Regan	1974	3			х							
Sörensen	1974	10		х								
Leonhardt und Walther	1962	1										
	Σ	153										

Tabelle A.3: Literaturliste und untersuchte Einflussparameter – Stahlbetonbalken mit Querkraftbewehrung

SPB mit Querkraftbewehrung mit Punktlast

- Moayer, M. und Regan, P.E. (1974): Shear strength of prestressed and reinforced concrete T-beams, ACI, SP 42, S. 183-214.
- Regan, P.E. (1971): Shear in reinforced concrete an experimental study, CIRIA-Report Nr. 4.
- Feddersen, B. und Nielsen, M.P. (1983): Opbøjet Spændarmering som Forskydningsarmering (in Dänisch), Bericht Serie R, Nr. 160, Technical University of Denmark.
- Huber, P., Schweighofer, A. und Kollegger, J. (2013): Shear strength of over 50 years old post-tensioned concrete bridge girders, fib-Symposium Tel-Aviv, Proceedings, S.273-276.
- Lyngberg, B. S. (1974): Ultimate shear resistance of partially prestressed reinforced concrete T-beams, ACI Journal, 73(18), S. 214-222.
- Cederwall, K., Hedman, O. und: Losberg, A. (1974): Shear strength of partially prestressed beams with pretensioned reinforcement of high grade deformed bars, ACI, SP 4.

Tabelle A.4: Literaturliste und untersuchte Einflussparameter – Spannbetonbalken mit Querkraftbewehrung

Autor	Jahr	Anzahl	Untersuchte Parameter						
			ρι	ρ _w	d	f _c	a/d	ρ	P/A
Moayer und Regan	1974	14	Х	Х				х	х
Feddersen	1983	8					х	х	х
Huber et al.	2013	1							
Lyngberg	1974	7	х					х	х
Cederwall et al.	1974	25	х	х		х			х
	Σ	45				•	•	•	•

Legende:

- a/d Schubschlankheit
- ρ_I Längsbewehrungsgrad
- ρ_w Querkraftbewehrungsgrad
- ρ_p Spannstahlgrad
- b_w Breite
- d statische Höhe
- P/A Normalspannung infolge Vorspannung

- b_{fc} Breite des Druckgurtes
- h_{fc} Höhe des Druckgurtes
- fc Betondruckfestigkeit
- dg Größtkorndurchmesser
- N äußere Normalkraft
- L Leichtbeton
- n Anzahl der Lage der Längsbew.

FFG

ANHANG B – Grunddaten der Querkraftdatenbanken

Dieser Anhang enthält einen Auszug der wesentlichsten Parameter sämtlicher Datenbanken, die gesamte Datenbank ist als Excel-Datei ist verfügbar. Die Datenbanken enthalten alle gesammelten Querkraftversuche ohne Anwendung der in Abschnitt 3.3.2.4 definierten Ausschlusskriterien.

	-
Prüfkörperabmessung [mm]	Umrechnung in einachsiale
	Zylinderdruckfestigkeit fc
Zylinder (Ø/h = 150/300)	$f_{c} = f_{c,cyl,150/300}$
Zylinder (Ø/h = 100/300)	$f_c = 1,05 \cdot f_{c,cyl,100/300}$
Zylinder (Ø/h = 120/360)	$f_c = 1,05 \cdot f_{c,cyl,120/360}$
Zylinder (Ø/h = 100/200)	$f_c = 0.97 \cdot f_{c,cyl,100/200}$
Prisma (a/a/h = 100/100/500)	$f_c = 1,05 \cdot f_{c,pr,100/100/500}$
Würfel (a=100)	$f_c = 0,74 \cdot f_{c,cu,100}$
Würfel (a=150)	$f_c = 0.82 \cdot f_{c,cu,150}$
Würfel (a=200)	$f_c = 0.86 \cdot f_{c,cu,200}$

Tabelle B.1: Umrechnungsfaktoren der Druckfestigkeit für verschiedene Prüfkörpergeometrien in Anlehnung an [56]

Dabei werden folgende Parameter dargestellt:

Nr.	[-]	Fortlaufende Nummerierung
Lit	[-]	Autor (siehe Anhang A)
Bez.	[-]	Bezeichnung der Prüfkörper
b, b _w	[mm]	Stegbreite
b _{fc}	[mm]	Breite des Druckgurtes
h _{fc}	[mm]	Höhe des Druckgurtes
d	[mm]	Statische Nutzhöhe (bei Spannbeton gewichtet aus Nutzhöhe der Be-
		wehrung und des Spannstahls
b _{Platte}	[mm]	Gesamte Breite der Kragplatte (bei einigen Kragplatten wurden meh-
		rere Versuche je Platte durchgeführt)
hAnschnitt	[mm]	Höhe der Kragplatte im Anschnitt zum Steg
\mathbf{h}_{Ende}	[mm]	Höhe der Kragplatte am Ende
d _{Anschnitt}	[mm]	Statische Nützhöhe im Anschnitt zum Steg
α_{Voute}	[°]	Neigungswinkel der Voute
a/d	[-]	Schubschlankheit
l/d	[-]	Schlankheit
ρι	[%]	Längsbewehrungsgrad Betonstahl
ρ_{lw}	[%]	Längsbewehrungsgrad Betonstahl auf die Stegfläche bezogen

$\rho_{s,c}$	[%]	Druckbewehrungsgrad
fy	[MPa]	Fließgrenze der Längsbewehrung
Р	[kN]	Vorspannkraft zum Zeitpunkt des Versuchs
σ_{cp}	[MPa]	Normalspannung infolge Vorspannung
ρ _p	[%]	Bewehrungsgrad des Spannstahls
σ_{p}/f_{py}	[-]	Vorspanngrad
Ø _w	[mm]	Durchmesser der Bügelbewehrung
Sw	[mm]	Bügelabstand
s _w /d	[-]	Verhältnis Bügelabstand zur statischen Nutzhöhe
f _{yw}	[MPa]	Fließgrenze der Bügelbewehrung
ρ _w	[%]	Bügelbewehrungsgrad
dg	[mm]	Größtkorndurchmesser
f _c	[MPa]	Zylinderdruckfestigkeit (siehe Tabelle B.1)
f _{ct}	[MPa]	Zugfestigkeit (gemessen oder berechnet nach Eurocode 2 [108])
Vcr	[kN]	Experimentelle Querkraft bei Schubrissbildung
V _{exp}	[kN]	Experimentelle Querkraft bei Bruch
p _{exp}	[kN/m]	Gleichlast bei Bruch
fq	[kN/m]	Konstante Linienlast
l _{fq}	[mm]	Abstand der Linienlast vom Anschnitt der Kragplatte
n _{last}	[-]	Anzahl der Lasten
F _{ges}	[kN]	Gesamtlast beim Bruch

Querkraftversuche an Stahlbetonbalken mit Rechteckquerschnitt ohne Schubbewehrung mit Punktlast

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	f _{ct}	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
1	Huber	VK2	500	377	3,85	1,07	32	500	89,1	4,9	217,3
2	Leonhardt	4r	190	270	2,48	2,07	30	465	28,6	2,3	86,1
3	Leonhardt et al.	5r	190	270	3,00	2,07	30	465	28,6	2,3	75,3
4	Leonhardt et al.	6r	190	270	4,07	2,07	30	465	28,6	2,3	66,5
5	Leonhardt et al.	7-1	190	278	4,86	2,01	30	465	29,9	2,4	60,1
6	Leonhardt et al.	7-2	190	278	4,86	2,01	30	465	29,9	2,4	66,0
7	Leonhardt et al.	8-1	190	278	5,83	2,01	30	465	30,0	2,4	63,0
8	Leonhardt et al.	8-2	190	274	5,91	2,04	30	465	30,0	2,4	63,0
9	Leonhardt et al.	D1/1	50	70	3,00	1,62	15	451	32,4	3,0	7,3
10	Leonhardt et al.	D1/2	50	70	3,00	1,62	15	451	32,4	3,0	7,2
11	Leonhardt et al.	D2/1	100	140	3,00	1,62	15	427	32,5	3,0	22,7
12	Leonhardt et al.	D2/2	100	140	3,00	1,62	15	427	32,5	3,0	23,3
13	Leonhardt et al.	D3/1	150	210	3,00	1,62	15	413	33,6	3,0	46,5
14	Leonhardt et al.	D3/2	150	210	3,00	1,62	15	413	33,6	3,0	44,7
15	Leonhardt et al.	D4/1	200	280	3,00	1,62	15	440	35,9	3,0	74,4
16	Leonhardt et al.	D4/2	200	280	3,00	1,62	15	440	35,9	3,0	74,4
17	Leonhardt et al.	C1	100	150	3,00	1,34	30	425	39,8	2,9	21,6
18	Leonhardt et al.	C2	150	300	3,00	1,34	30	425	39,8	2,9	64,9
19	Leonhardt et al.	C3	200	450	3,00	1,34	30	425	39,8	2,9	99,4
20	Leonhardt et al.	C4	225	600	3,00	1,34	30	425	39,8	2,9	147,9
21	Angelakos, Bentz	DB120	300	925	2,92	1,01	10	550	21,0	1,7	179,0
22	Angelakos, Bentz	DB130	300	925	2,92	1,01	10	550	32,0	2,5	185,0
23	Angelakos, Bentz	DB140	300	925	2,92	1,01	10	550	38,0	2,9	180,0
24	Angelakos, Bentz	DB165	300	925	2,92	1,01	10	550	65,0	4,3	185,0
25	Angelakos, Bentz	DB180	300	925	2,92	1,01	10	550	80,0	4,7	172,0
26	Angelakos, Bentz	DB230	300	895	3,02	2,09	10	550	32,0	2,5	257,0
27	Angelakos, Bentz	DB0.530	300	925	2,92	0,50	10	550	32,0	2,5	165,0
28	Bahl, Leonhardt	B1	240	300	3,00	1,26	30	426	24,1	2,4	70,1
29	Bahl, Leonhardt	B2	240	600	3,00	1,26	30	426	30,7	2,7	117,2
30	Bahl, Leonhardt	B3	240	900	3,00	1,26	30	426	28,6	3,0	161,9
31	Bahl, Leonhardt	B4	240	1200	3,00	1,26	30	426	26,2	2,4	176,6
32	Bahl, Leonhardt	B5	240	600	3,00	0,63	30	426	27,6	2,4	104,0
33	Bahl, Leonhardt	B6	240	600	3,00	0,63	30	422	25,7	2,9	111,8
34	Bahl, Leonhardt	B7	240	900	3,00	0,63	30	426	28,3	2,9	134,9
35	Bahl, Leonhardt	B8	240	900	3,00	0,63	30	422	28,8	2,3	122,7
36	Campana, Muttoni	SC12	302	354	3,45	1,49	16	580	41,5	2,9	148,0
37	Campana, Muttoni	SC13	303	354	3,45	1,06	16	580	43,1	2,9	137,0
38	Campana, Muttoni	SC16	302	346	3,53	1,52	16	580	55,7	3,2	115,0

Tabelle B.2: Datenbank StB_o

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
39	Campana, Muttoni	SC17	304	350	3,49	1,07	16	580	57,2	3,2	127,0
40	Elzanaty et al.	F11	177,8	269,9	4,00	1,19	13	435	20,7	1,6	44,4
41	Elzanaty et al.	F12	177,8	268,3	4,00	2,44	13	435	20,7	1,6	53,8
42	Elzanaty et al.	F8	177,8	273,1	4,00	0,93	13	435	40,0	3,0	45,4
43	Elzanaty et al.	F13	177,8	269,9	4,00	1,19	13	435	40,0	3,0	48,3
44	Elzanaty et al.	F14	177,8	268,3	4,00	2,44	13	435	40,0	3,0	64,1
45	Elzanaty et al.	F1	177,8	269,9	4,00	1,19	13	435	65,5	4,3	58,1
46	Elzanaty et al.	F2	177,8	268,3	4,00	2,44	13	435	65,5	4,3	66,3
47	Elzanaty et al.	F10	177,8	266,7	4,00	3,21	13	435	65,5	4,3	75,6
48	Elzanaty et al.	F9	177,8	268,3	4,00	1,63	13	435	79,3	4,6	63,0
49	Elzanaty et al.	F15	177,8	268,3	4,00	2,44	13	435	79,3	4,6	67,0
50	Elzanaty et al.	F6	177,8	268,3	6,00	2,44	13	435	63,4	4,2	61,1
51	Caldera,Mari	H50/1	200	359	3,01	2,24	12	500	49,9	3,6	99,7
52	Caldera,Mari	H60/1	200	359	3,01	2,24	12	500	60,8	4,2	108,1
53	Caldera,Mari	H75/1	200	359	3,01	2,24	12	500	68,9	4,0	99,9
54	Caldera,Mari	H100/1	200	359	3,01	2,24	12	500	87,0	4,1	118,0
55	Caldera,Mari	H50/5	200	359	3,01	2,24	12	500	49,9	3,6	129,7
56	Caldera,Mari	H100/5	200	359	3,01	2,24	12	500	87,0	4,1	140,9
57	Collins,Kuchma	B100	300	925	2,92	1,01	10	550	36,0	2,8	225,0
58	Collins,Kuchma	B100-R	300	925	2,92	1,01	10	550	36,0	2,8	249,0
59	Collins,Kuchma	B100D	300	925	2,92	0,76	10	550	36,0	2,8	320,0
60	Collins,Kuchma	B100H	300	925	2,92	1,01	10	550	98,0	5,0	193,0
61	Collins,Kuchma	B100HE	300	925	2,92	1,01	10	550	98,0	5,0	217,0
62	Collins,Kuchma	B100L	300	925	2,92	1,01	10	483	39,0	3,0	223,0
63	Collins,Kuchma	B100L-R	300	925	2,92	1,01	10	483	39,0	3,0	235,0
64	Collins,Kuchma	B100B	300	925	2,92	1,01	10	550	39,0	3,0	204,0
65	Collins,Kuchma	BN100	300	925	2,92	0,76	10	550	37,2	2,8	192,0
66	Collins,Kuchma	BN50	300	450	3,00	0,81	10	480	37,2	2,8	132,0
67	Collins,Kuchma	BN25	300	225	3,00	0,89	10	483	37,2	2,8	73,0
68	Collins,Kuchma	BN12	300	110	3,07	0,91	10	522	37,2	2,8	40,0
69	Collins,Kuchma	BND100	300	925	2,92	0,76	10	550	37,2	2,8	258,0
70	Collins,Kuchma	BND50	300	450	3,00	0,81	10	480	37,2	2,8	163,0
71	Collins,Kuchma	BND25	300	225	3,00	0,89	10	483	37,2	2,8	112,0
72	Collins,Kuchma	BH100	300	925	2,92	0,76	10	550	98,8	5,1	193,0
73	Collins,Kuchma	BH50	300	450	3,00	0,81	10	480	98,8	5,1	132,0
74	Collins,Kuchma	BH25	300	225	3,00	0,89	10	483	98,8	5,1	85,0
75	Collins,Kuchma	BHD100	300	925	2,92	0,76	10	550	98,8	5,1	278,0
76	Collins,Kuchma	BHD100R	300	925	2,92	0,76	10	550	98,8	5,1	334,0
77	Collins,Kuchma	BHD50	300	450	3,00	0,81	10	480	98,8	5,1	193,0
78	Collins,Kuchma	BHD50R	300	450	3,00	0,81	10	480	98,8	5,1	205,0
79	Collins,Kuchma	BHD25	300	225	3,00	0,89	10	483	98,8	5,1	111,0

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
80	Collins,Kuchma	BRL100	300	925	2,92	0,51	10	550	94,0	5,0	163,0
81	Taylor	A1	400	930	3,01	1,35	38	420	27,3	2,2	363,3
82	Taylor	A2	400	930	3,01	1,35	19	420	21,5	1,7	333,0
83	Taylor	B1	200	465	3,01	1,35	38	420	25,5	2,0	104,6
84	Taylor	B2	200	465	3,01	1,35	19	420	20,9	1,7	87,7
85	Taylor	B3	200	465	3,01	1,35	9	420	27,0	2,1	85,9
86	Grimm	S1.1	300	153	3,73	1,34	16	660	90,1	5,8	70,5
87	Grimm	S1.2	300	152	3,75	2,20	16	517	91,2	3,8	75,5
88	Grimm	S1.3	300	146	3,90	4,22	16	487	93,7	4,3	98,8
89	Grimm	S2.1	300	350	3,51	0,60	16	490	94,4	5,0	127,2
90	Grimm	S2.2	300	348	3,53	1,88	16	469	91,3	3,8	192,2
91	Grimm	S2.3	300	348	3,53	0,94	16	469	93,7	5,0	125,4
92	Grimm	S2.4	300	328	3,75	3,75	16	487	94,1	4,3	231,4
93	Grimm	S3.1	300	750	3,51	0,42	16	490	91,3	4,9	141,3
94	Grimm	S3.2	300	718	3,66	1,72	16	487	93,7	4,3	262,6
95	Grimm	S3.3	300	746	3,53	0,83	16	487	94,4	5,0	205,5
96	Grimm	S3.4	300	690	3,81	3,57	16	487	94,1	4,3	385,0
97	Grimm	S4.1	300	153	3,73	1,34	16	660	110,9	5,4	74,6
98	Grimm	S4.2	300	152	3,75	2,20	16	517	110,9	5,4	90,6
99	Grimm	S4.3	300	146	3,90	4,22	16	487	110,9	5,4	122,5
100	Mphonde,Frantz	AO-3-3b	152	298	3,57	3,34	10	414	21,3	1,7	64,6
101	Mphonde,Frantz	AO-3-3c	152	298	3,57	2,33	10	414	27,8	2,2	66,8
102	Mphonde,Frantz	AO-7-3a	152	298	3,57	3,34	10	414	38,6	2,9	82,2
103	Mphonde,Frantz	AO-7-3b	152	298	3,57	3,34	10	414	42,7	3,2	82,8
104	Mphonde,Frantz	AO-11-3a	152	298	3,57	3,34	10	414	76,8	4,6	89,7
105	Mphonde,Frantz	AO-11-3b	152	298	3,57	3,34	10	414	76,5	4,6	89,4
106	Mphonde,Frantz	AO-15-3a	152	298	3,57	3,34	10	414	83,4	4,7	93,5
107	Mphonde,Frantz	AO-15-3b	152	298	3,57	3,34	10	414	96,1	5,0	100,0
108	Mphonde,Frantz	AO-15-3c	152	298	3,57	3,34	10	414	86,6	4,8	97,8
109	Yoon et al.	N1-S	375	665	3,23	2,83	20	400	36,0	3,1	249,0
110	Yoon et al.	M1-S	375	665	3,23	2,83	10	400	67,0	4,6	296,0
111	Yoon et al.	H1-S	375	665	3,23	2,83	10	400	87,0	6,1	327,0
112	Krefeld, Thurston	4A3	203	390	2,34	2,06	25	366	28,9	2,3	109,9
113	Krefeld, Thurston	5A3	203	390	2,34	3,09	25	366	28,2	2,2	170,4
114	Krefeld, Thurston	11A2	152	314	2,91	3,42	25	366	28,5	2,2	73,4
115	Krefeld, Thurston	12A2	152	238	3,85	4,51	25	366	28,4	2,2	64,1
116	Krefeld, Thurston	18A2	152	316	2,89	2,68	25	386	18,2	1,4	63,2
117	Krefeld, Thurston	18B2	152	316	2,89	2,68	25	386	18,7	1,5	72,1
118	Krefeld, Thurston	18C2	152	316	2,89	2,68	25	386	21,3	1,7	73,4
119	Krefeld, Thurston	18D2	152	316	2,89	2,68	25	386	20,8	1,6	60,1
120	Krefeld, Thurston	13A2	152	314	2,91	0,81	25	366	18,8	1,5	48,5

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
121	Krefeld, Thurston	14A2	152	238	3,85	1,07	25	366	19,5	1,5	35,1
122	Krefeld, Thurston	15A2	152	316	2,89	1,34	25	386	19,0	1,5	45,8
123	Krefeld, Thurston	15B2	152	316	2,89	1,34	25	386	19,5	1,5	52,0
124	Krefeld, Thurston	16A2	152	240	3,81	1,76	25	386	20,9	1,7	41,8
125	Krefeld, Thurston	17A2	152	243	3,77	2,10	25	366	20,7	1,6	44,0
126	Krefeld, Thurston	18E2	152	316	2,89	2,68	25	386	18,7	1,5	81,8
127	Krefeld, Thurston	19A2	152	240	3,81	3,53	25	386	19,4	1,5	46,3
128	Krefeld, Thurston	20A2	152	238	3,85	4,51	25	366	19,8	1,6	50,7
129	Krefeld, Thurston	21A2	203	238	3,85	5,08	25	366	18,8	1,5	76,5
130	Krefeld, Thurston	1AC	152	256	4,77	1,00	25	366	20,7	1,6	33,0
131	Krefeld, Thurston	2AC	152	254	4,80	1,31	25	394	21,7	1,7	37,8
132	Krefeld, Thurston	3AC	152	256	4,77	1,99	25	366	19,6	1,5	44,0
133	Krefeld, Thurston	4AC	152	254	4,80	2,62	25	394	15,5	1,2	37,8
134	Krefeld, Thurston	5AC	152	252	4,83	3,35	25	386	17,3	1,3	41,8
135	Krefeld, Thurston	6AC	152	250	4,87	4,28	25	366	21,5	1,7	53,4
136	Krefeld, Thurston	1CC	152	256	5,96	1,00	25	366	17,9	1,4	26,7
137	Krefeld, Thurston	2CC	152	254	6,00	1,31	25	394	19,6	1,5	30,2
138	Krefeld, Thurston	3CC	152	256	5,96	1,99	25	366	19,3	1,5	35,6
139	Krefeld, Thurston	4CC	152	254	6,00	2,62	25	394	19,4	1,5	40,0
140	Krefeld, Thurston	5CC	152	252	6,04	3,26	25	386	19,2	1,5	44,5
141	Krefeld, Thurston	6CC	152	250	6,09	4,28	25	366	19,4	1,5	44,5
142	Krefeld, Thurston	3EC	152	256	7,16	1,99	25	366	17,8	1,4	37,8
143	Krefeld, Thurston	4EC	152	254	7,20	2,62	25	394	20,0	1,6	41,8
144	Krefeld, Thurston	5EC	152	252	7,24	3,26	25	386	18,4	1,4	39,6
145	Krefeld, Thurston	6EC	152	250	7,30	4,28	25	366	18,0	1,4	42,3
146	Krefeld, Thurston	3GC	152	256	8,35	1,99	25	366	21,2	1,7	31,6
147	Krefeld, Thurston	4GC	152	254	8,40	2,62	25	394	19,8	1,6	36,9
148	Krefeld, Thurston	5GC	152	252	8,45	3,26	25	386	20,7	1,6	41,8
149	Krefeld, Thurston	6GC	152	250	8,52	4,28	25	366	20,2	1,6	40,5
150	Krefeld, Thurston	6C	152	252	3,62	3,26	25	366	19,0	1,5	51,2
151	Krefeld, Thurston	VIII-3AAC	152	256	3,58	1,99	25	366	32,6	2,5	55,6
152	Krefeld, Thurston	VIII-4AAC	152	254	3,60	2,62	25	394	27,5	2,2	57,8
153	Krefeld, Thurston	VIII-5AAC	152	252	3,62	3,26	25	386	31,0	2,4	56,9
154	Krefeld, Thurston	VIII-6AAC	152	250	3,65	4,28	25	366	32,5	2,5	60,1
155	Krefeld, Thurston	VIII-3AC	152	256	4,77	1,99	25	366	30,1	2,4	53,4
156	Krefeld, Thurston	VIII-4AC	152	254	4,80	2,62	25	394	28,8	2,3	53,8
157	Krefeld, Thurston	VIII-5AC	152	252	4,83	3,26	25	386	31,0	2,4	54,3
158	Krefeld, Thurston	VIII-6AC	152	250	4,87	4,28	25	366	32,2	2,5	59,2
159	Krefeld, Thurston	VIII-4CC	152	254	6,00	2,62	25	394	36,2	2,8	52,5
160	Krefeld, Thurston	VIII-5CC	152	252	6,04	3,26	25	386	35,3	2,7	57,4
161	Krefeld, Thurston	VIII-6CC	152	250	6,09	4,28	25	366	36,2	2,8	63,2

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
162	Krefeld, Thurston	VIII-4EC	152	254	7,20	2,62	25	394	34,7	2,7	51,6
163	Krefeld, Thurston	VIII-5EC	152	252	7,24	3,26	25	386	35,3	2,7	53,4
164	Krefeld, Thurston	VIII-6EC	152	250	7,30	4,28	25	366	31,9	2,5	48,9
165	Krefeld, Thurston	X-3AAC	152	256	3,58	1,99	25	366	11,8	0,7	40,5
166	Krefeld, Thurston	X-4AAC	152	254	3,60	2,62	25	394	12,2	0,8	42,7
167	Krefeld, Thurston	X-5AAC	152	252	3,62	3,26	25	386	14,5	1,0	50,3
168	Krefeld, Thurston	X-6AAC	152	250	3,65	4,28	25	366	12,6	0,8	62,3
169	Krefeld, Thurston	X-3AC	152	256	4,77	1,99	25	366	12,9	0,9	36,9
170	Krefeld, Thurston	X-4AC	152	254	4,80	2,62	25	394	12,2	0,8	40,0
171	Krefeld, Thurston	X-5AC	152	252	4,83	3,26	25	386	14,5	1,0	43,6
172	Krefeld, Thurston	X-6AC	152	250	4,87	4,28	25	366	11,7	0,7	40,9
173	Krefeld, Thurston	X-3CC	152	254	6,00	2,00	25	366	11,5	0,7	31,1
174	Krefeld, Thurston	X-4CC	152	252	6,04	2,63	25	394	16,1	1,2	35,1
175	Krefeld, Thurston	X-5CC	152	250	6,09	3,29	25	386	13,9	1,0	34,3
176	Krefeld, Thurston	X-6CC	152	254	6,00	4,22	25	394	12,9	0,9	39,6
177	Krefeld, Thurston	X-4EC	152	252	7,24	2,63	25	386	13,5	0,9	35,6
178	Krefeld, Thurston	X-5EC	152	250	7,30	3,29	25	366	14,2	1,0	34,7
179	Krefeld, Thurston	С	203	483	3,16	1,55	25	394	15,8	1,2	84,5
180	Krefeld, Thurston	PCa	152	250	7,30	4,28	25	366	34,2	2,6	53,4
181	Krefeld, Thurston	PCb	152	250	7,30	4,28	25	366	34,2	2,6	53,4
182	Krefeld, Thurston	s-I Oca	152	254	6,00	2,62	25	394	33,7	2,6	48,5
183	Krefeld, Thurston	s-I Ocb	152	254	6,00	2,62	25	394	36,8	2,8	52,5
184	Krefeld, Thurston	s-II Oca	254	456	4,01	2,17	25	386	36,1	2,8	146,8
185	Krefeld, Thurston	s-II Ocb	254	456	4,01	2,17	25	386	36,1	2,8	133,4
186	Chana	2.1a	203	356	3,00	1,74	20	478	40,4	3,4	96,0
187	Chana	2.1b	203	356	3,00	1,74	20	478	40,4	3,4	97,1
188	Chana	2.2a	203	356	3,00	1,74	10	478	34,1	2,9	87,4
189	Chana	2.2b	203	356	3,00	1,74	10	478	34,1	2,9	94,4
190	Chana	2.3a	203	356	3,00	1,74	20	478	37,1	3,1	99,4
191	Chana	2.3b	203	356	3,00	1,74	20	478	37,1	3,1	96,4
192	Chana	3.1a	100	177	3,00	1,77	10	421	25,5	2,9	23,8
193	Chana	3.1b	100	177	3,00	1,77	10	421	25,5	2,9	23,9
194	Chana	3.2a	100	177	3,00	1,77	10	421	27,2	3,0	24,5
195	Chana	3.2b	100	177	3,00	1,77	10	421	27,2	3,0	25,5
196	Chana	3.3a	100	177	3,00	1,77	10	421	29,6	2,7	26,5
197	Chana	3.3b	100	177	3,00	1,77	10	421	29,6	2,7	23,2
198	Chana	D1	100	177	3,00	1,77	10	421	23,3	2,6	22,1
199	Chana	D2	100	177	3,00	1,77	10	421	23,9	2,8	23,4
200	Chana	D3	100	177	3,00	1,77	10	421	33,0	3,5	21,4
201	Chana	4.1a	60	106	3,00	1,78	5	504	21,5	3,2	9,8
202	Chana	4.1b	60	106	3,00	1,78	5	504	21,5	3,2	8,7

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
_	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
203	Chana	4.2a	60	106	3,00	1,78	5	504	21,5	3,2	9,0
204	Chana	4.2b	60	106	3,00	1,78	5	504	21,5	3,2	9,7
205	Chana	4.3a	60	106	3,00	1,78	5	504	36,4	3,7	11,7
206	Chana	4.3b	60	106	3,00	1,78	5	504	36,4	3,7	12,4
207	Chana	4.4a	60	106	3,00	1,78	5	504	36,4	3,7	9,6
208	Chana	4.4b	60	106	3,00	1,78	5	504	36,4	3,7	10,5
209	Chana	5.1a	200	170	3,00	1,85	10	478	25,3	3,2	47,8
210	Chana	5.1b	200	170	3,00	1,85	10	478	25,3	3,2	47,8
211	Chana	5.2a	200	170	3,00	1,85	20	478	42,8	2,8	55,0
212	Chana	5.2b	200	170	3,00	1,85	20	478	42,8	2,8	56,0
213	Kani et al.	266	153	272	2,48	0,50	19	396	18,1	1,4	33,0
214	Kani et al.	268	153	275	2,96	0,49	19	396	20,1	1,6	27,7
215	Kani et al.	179	153	264	2,57	0,53	19	400	32,3	2,5	34,1
216	Kani et al.	143	154	274	3,96	0,74	19	428	17,7	1,4	30,7
217	Kani et al.	149	153	272	2,50	0,78	19	380	18,0	1,4	44,2
218	Kani et al.	150	153	273	2,48	0,77	19	380	18,0	1,4	46,7
219	Kani et al.	151	154	273	2,49	0,78	19	382	19,3	1,5	36,1
220	Kani et al.	152	149	270	3,02	0,79	19	384	19,7	1,5	33,0
221	Kani et al.	153	152	273	2,99	0,76	19	384	19,7	1,5	33,3
222	Kani et al.	103	155	274	2,97	0,74	19	423	29,5	2,3	39,3
223	Kani et al.	105	152	272	2,50	0,77	19	383	26,2	2,1	42,0
224	Kani et al.	106	154	268	2,53	0,76	19	422	28,8	2,3	45,1
225	Kani et al.	111	154	272	2,49	0,76	19	368	27,0	2,1	43,8
226	Kani et al.	112	153	273	2,48	0,76	19	368	27,0	2,1	39,9
227	Kani et al.	115	152	272	2,50	0,77	19	383	26,2	2,1	45,8
228	Kani et al.	116	152	271	3,01	0,78	19	384	26,4	2,1	39,8
229	Kani et al.	163	156	273	2,49	0,76	19	378	35,4	2,7	41,0
230	Kani et al.	163'	152	272	2,50	0,78	19	378	35,4	2,7	38,5
231	Kani et al.	166	152	271	3,01	0,78	19	377	35,4	2,7	40,8
232	Kani et al.	166'	154	274	2,97	0,76	19	379	35,4	2,7	38,8
233	Kani et al.	121	152	272	2,99	1,85	19	330	20,3	1,6	49,4
234	Kani et al.	122	150	276	3,94	1,84	19	343	19,9	1,6	39,3
235	Kani et al.	123	155	271	4,00	1,79	19	346	15,4	1,1	38,3
236	Kani et al.	124	154	271	5,00	1,80	19	345	15,4	1,1	32,5
237	Kani et al.	126	155	272	2,99	1,78	19	346	16,3	1,2	43,2
238	Kani et al.	128	154	271	6,00	1,80	19	346	15,7	1,2	35,3
239	Kani et al.	130	153	276	5,41	1,79	19	346	18,0	1,4	40,5
240	Kani et al.	131	151	274	2,48	1,85	19	401	18,1	1,4	50,1
241	Kani et al.	132	154	271	2,51	1,81	19	417	18,5	1,4	52,5
242	Kani et al.	133	154	273	4,97	1,81	19	508	19,9	1,6	39,0
243	Kani et al.	27	152	271	2,50	1,87	19	396	29,8	2,3	51,9

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
_	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
244	Kani et al.	28	152	271	2,50	1,87	19	396	29,2	2,3	54,8
245	Kani et al.	29	152	271	4,50	1,87	19	350	24,5	1,9	43,4
246	Kani et al.	30	152	271	4,50	1,87	19	350	25,2	2,0	46,8
247	Kani et al.	31	152	271	6,00	1,87	19	350	24,0	1,9	39,2
248	Kani et al.	32	152	271	6,00	1,87	19	350	24,3	1,9	40,1
249	Kani et al.	33	152	271	5,25	1,87	19	350	27,6	2,2	45,9
250	Kani et al.	34	152	271	5,25	1,87	19	350	27,6	2,2	43,9
251	Kani et al.	35	155	270	3,53	1,82	19	491	26,1	2,1	45,4
252	Kani et al.	36	153	273	3,49	1,82	19	491	26,1	2,1	52,1
253	Kani et al.	182	155	269	5,05	1,80	19	386	33,9	2,6	49,3
254	Kani et al.	186	155	272	3,99	1,78	19	395	35,1	2,7	55,9
255	Kani et al.	187	154	271	6,00	1,79	19	386	32,5	2,5	40,2
256	Kani et al.	191	154	275	2,96	1,80	19	497	34,0	2,6	53,6
257	Kani et al.	193	153	278	2,44	1,80	19	352	34,6	2,7	57,2
258	Kani et al.	194	154	278	2,93	1,80	19	352	34,6	2,7	51,7
259	Kani et al.	195	153	275	3,94	1,82	19	352	34,6	2,7	47,8
260	Kani et al.	196	154	269	5,05	1,85	19	380	36,2	2,8	51,7
261	Kani et al.	197	150	274	2,48	1,83	19	376	36,0	2,8	53,9
262	Kani et al.	81	153	274	5,93	2,76	19	343	27,5	2,2	51,7
263	Kani et al.	82	155	271	8,00	2,77	19	343	27,5	2,2	40,8
264	Kani et al.	83	156	271	3,00	2,74	19	343	27,4	2,2	65,5
265	Kani et al.	84	151	271	4,00	2,84	19	342	27,4	2,2	55,9
266	Kani et al.	91	154	269	6,06	2,70	19	364	27,4	2,2	51,5
267	Kani et al.	92	152	270	7,03	2,73	19	369	30,3	2,4	46,3
268	Kani et al.	93	155	273	6,46	2,66	19	372	25,3	2,0	54,3
269	Kani et al.	95	153	275	2,47	2,75	19	338	25,3	2,0	73,2
270	Kani et al.	96	153	275	3,94	2,76	19	335	25,3	2,0	56,8
271	Kani et al.	97	152	276	2,95	2,68	19	366	27,2	2,2	63,0
272	Kani et al.	98	153	275	2,47	2,68	19	366	26,2	2,1	128,4
273	Kani et al.	99	152	272	2,50	2,73	19	366	26,2	2,1	77,7
274	Kani et al.	202	154	273	5,97	2,68	19	377	33,9	2,6	50,4
275	Kani et al.	206	152	270	2,51	2,73	19	381	35,2	2,7	100,8
276	Kani et al.	207	153	275	6,92	2,67	19	370	34,5	2,7	48,7
277	Kani et al.	208	157	275	4,44	2,68	19	379	35,7	2,7	60,6
278	Kani et al.	209	153	273	6,96	2,76	19	379	35,7	2,7	54,4
279	Kani et al.	210	154	272	2,50	2,68	19	381	35,2	2,7	79,5
280	Kani et al.	211	153	270	3,02	2,73	19	381	35,2	2,7	57,7
281	Kani et al.	212	155	273	2,98	2,66	19	381	35,2	2,7	61,0
282	Kani et al.	213	154	276	4,44	2,66	19	381	36,7	2,8	57,9
283	Kani et al.	214	153	272	2,50	2,71	19	412	36,0	2,8	82,4
284	Kani et al.	215	154	274	2,48	2,67	19	412	36,0	2,8	66,3

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
_	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
285	Kani et al.	216	152	274	6,45	2,70	19	370	36,4	2,8	56,1
286	Kani et al.	40	152	140	5,35	2,59	19	388	26,4	2,1	32,1
287	Kani et al.	41	152	141	2,41	2,61	19	381	27,2	2,2	51,5
288	Kani et al.	43	151	137	5,92	2,73	19	392	27,9	2,2	29,2
289	Kani et al.	44	152	137	5,92	2,72	19	392	28,0	2,2	30,3
290	Kani et al.	45	151	133	2,05	2,83	19	392	25,5	2,0	64,7
291	Kani et al.	46	151	136	2,00	2,76	19	392	25,5	2,0	69,1
292	Kani et al.	47	151	132	5,13	2,84	19	392	24,8	2,0	28,3
293	Kani et al.	48	151	133	5,08	2,82	19	392	24,8	2,0	27,2
294	Kani et al.	52	152	138	3,93	2,69	19	392	24,8	2,0	29,0
295	Kani et al.	55	150	135	3,02	2,81	19	392	25,1	2,0	32,7
296	Kani et al.	56	153	137	3,46	2,67	19	403	27,2	2,2	28,1
297	Kani et al.	57	153	139	5,39	2,61	19	375	26,4	2,1	31,7
298	Kani et al.	58	152	138	3,44	2,66	19	416	27,2	2,2	29,0
299	Kani et al.	59	154	140	2,67	2,63	19	392	26,6	2,1	50,3
300	Kani et al.	60	155	139	2,93	2,64	19	392	26,8	2,1	39,4
301	Kani et al.	61	157	542	2,00	2,55	19	349	26,8	2,1	164,4
302	Kani et al.	63	154	543	4,00	2,77	19	352	26,2	2,1	94,3
303	Kani et al.	64	156	541	8,03	2,75	19	352	25,7	2,0	80,2
304	Kani et al.	65	150	553	2,46	2,82	19	374	27,0	2,1	113,4
305	Kani et al.	66	156	541	6,01	2,75	19	352	26,4	2,1	91,9
306	Kani et al.	68	157	539	9,06	2,70	19	395	27,2	2,1	76,8
307	Kani et al.	71	155	544	2,99	2,66	19	373	27,4	2,2	103,3
308	Kani et al.	72	152	549	1,98	2,71	19	384	24,8	2,0	197,9
309	Kani et al.	74	152	523	3,12	2,84	19	366	27,2	2,2	108,7
310	Kani et al.	75	152	524	3,11	2,84	19	366	27,2	2,2	110,2
311	Kani et al.	76	152	518	2,62	2,87	19	372	30,8	2,4	115,9
312	Kani et al.	79	153	556	6,84	2,72	19	381	26,1	2,1	84,7
313	Kani et al.	3041	152	1097	2,00	2,72	19	376	26,9	2,1	330,6
314	Kani et al.	3042	154	1095	2,50	2,70	19	375	26,4	2,1	241,4
315	Kani et al.	3043	154	1092	3,00	2,71	19	376	27,0	2,1	169,6
316	Kani et al.	3044	152	1097	3,98	2,72	19	376	29,5	2,3	163,5
317	Kani et al.	3045	155	1092	5,00	2,70	19	360	28,3	2,2	156,9
318	Kani et al.	3046	155	1097	7,00	2,70	19	360	26,7	2,1	158,7
319	Kani et al.	3047	155	1095	8,00	2,69	19	376	26,7	2,1	151,6
320	Kani et al.	271	611	269	6,07	2,75	19	376	27,0	2,1	219,2
321	Kani et al.	272	611	271	5,02	2,73	19	376	27,0	2,1	229,8
322	Kani et al.	273	612	271	4,01	2,72	19	376	27,2	2,1	208,1
323	Kani et al.	274	612	270	3,02	2,73	19	376	27,2	2,1	252,1
324	Kuhlmann et al.	A1	400	248	3,00	1,58	16	579	46,5	3,2	150,0
325	Kuhlmann et al.	A2	400	248	3,00	1,58	16	579	47,4	3,2	146,6

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
326	Kuhlmann et al.	A3	400	248	3,00	1,58	16	579	48,5	3,3	119,8
327	Kuhlmann et al.	A4	400	248	3,00	2,47	16	559	48,8	3,3	162,5
328	Kuhlmann et al.	A5	400	248	3,00	1,01	16	585	49,4	3,3	146,3
329	Kuhlmann et al.	A6	400	248	3,00	1,58	16	579	49,6	3,3	198,8
330	Kuhlmann et al.	B1	400	248	3,00	1,94	16	558	47,6	4,0	187,3
331	Kuhlmann et al.	B2	400	248	5,00	1,94	16	558	45,9	3,7	122,5
332	Kuhlmann et al.	B3	400	248	3,00	1,94	16	558	46,0	3,7	164,4
333	Kuhlmann et al.	B4	400	248	3,00	1,94	16	558	46,2	3,8	109,8
334	Kuhlmann et al.	B5	400	248	3,00	1,94	16	558	47,5	4,0	139,4
335	Kuhlmann et al.	B6	400	248	3,00	1,01	16	572	45,8	3,7	137,3
336	Kuhlmann et al.	B7	400	248	3,00	1,58	16	546	43,8	3,4	144,6
337	Kuhlmann et al.	B8	400	248	3,00	2,47	16	570	45,3	3,6	150,2
338	Kuhlmann et al.	B9	400	248	3,00	2,73	16	566	45,1	3,6	150,8
339	Kuhlmann et al.	B10	400	248	3,00	1,01	16	572	47,5	4,0	94,1
340	Kuhlmann et al.	B11	400	248	3,00	1,58	16	546	47,2	3,9	160,1
341	Kuhlmann et al.	B12	400	248	3,00	2,47	16	570	46,8	3,9	174,0
342	Kuhlmann et al.	C3	400	248	4,03	1,58	16	559	43,4	3,9	136,1
343	Kuhlmann et al.	C4	400	248	4,03	1,58	16	559	43,6	3,9	144,2
344	Kuhlmann et al.	C5	400	248	4,03	1,58	16	559	43,7	3,9	136,1
345	Kuhlmann et al.	C6	400	248	4,03	1,58	16	559	44,3	3,9	138,5
346	Kuhlmann et al.	C7	400	248	4,03	1,58	16	559	44,4	3,9	125,1
347	Kuhlmann et al.	C8	400	248	4,03	1,58	16	559	44,5	3,9	116,7
348	Kuhlmann et al.	C9	400	248	3,00	1,94	16	554	27,1	2,3	105,2
349	Kuhlmann et al.	C10	400	248	3,00	1,94	16	554	51,5	3,8	146,0
350	Kuhlmann et al.	C11	400	248	3,00	1,48	16	550	45,0	3,9	146,4
351	Kuhlmann et al.	C12	400	248	3,00	1,48	16	550	45,1	4,0	151,2
352	Kuhlmann et al.	C13	400	248	3,00	1,94	16	554	45,5	4,0	111,2
353	Sagaseta	BG01	135	465	3,44	1,00	10	580	80,2	5,7	61,3
354	Sagaseta	BG02	135	465	3,44	1,00	10	580	80,2	5,7	63,1
355	Sagaseta	BL01	135	465	3,44	1,00	10	580	68,4	4,9	46,9
356	Sagaseta	BL02	135	465	3,44	1,00	10	580	68,4	4,9	54,1
357	Walraven	A1	200	125	3,00	0,83	16	440	28,0	2,5	30,2
358	Walraven	A2	200	420	3,00	0,74	16	440	28,0	2,5	71,7
359	Walraven	A3	200	720	3,00	0,79	16	440	28,5	2,7	102,6
360	Walraven	B1	200	125	3,00	0,83	16	440	30,8	2,9	40,2
361	Walraven	B2	200	420	3,00	0,74	16	440	30,8	2,9	61,6
362	Walraven	B3	200	720	3,00	0,79	16	440	28,5	3,3	81,0
363	Aster Koch	2	1000	250	3,68	0,64	30	544	28,0	2,7	218,5
364	Aster Koch	3	1000	250	3,68	0,91	30	525	28,4	3,0	223,0
365	Aster Koch	11	1000	500	3,64	0,46	30	525	27,9	2,4	268,1
366	Aster Koch	12	1000	500	3,64	0,63	30	525	28,4	3,0	330,9

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	fct	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MP a	kN
367	Aster Koch	16	1000	750	3,67	0,42	30	526	28,7	2,7	406,6
368	Sherwood, Bentz	L-10N1	300	1400	2,89	0,84	10	452	38,4	2,9	249,5
369	Sherwood, Bentz	L-10N2	300	1400	2,89	0,84	10	452	40,3	3,0	227,0
370	Sherwood, Bentz	L-10H	300	1400	2,89	0,84	10	452	73,6	4,5	224,5
371	Sherwood, Bentz	L-20N1	300	1400	2,89	0,84	19	452	31,4	2,5	249,5
372	Sherwood, Bentz	L-20N2	300	1400	2,89	0,84	19	452	33,2	2,6	250,0
373	Sherwood, Bentz	L-40N1	300	1400	2,89	0,84	38	452	28,1	2,2	226,5
374	Sherwood, Bentz	L-40N2	300	1400	2,89	0,84	38	452	28,5	2,2	272,5
375	Sherwood, Bentz	L-50N1	300	1400	2,89	0,84	51	452	41,0	3,1	256,0
376	Sherwood, Bentz	L-50N2	300	1400	2,89	0,84	51	452	40,1	3,0	282,5
377	Sherwood, Bentz	L-50N2R	300	1400	2,89	0,84	51	452	40,1	3,0	307,0
378	Sherwood, Bentz	S-10N1	122	280	2,89	0,83	10	494	41,9	3,1	36,4
379	Sherwood, Bentz	S-10N2	122	280	2,89	0,83	10	494	41,9	3,1	38,1
380	Sherwood, Bentz	S-10H	122	280	2,89	0,83	10	494	77,3	4,6	37,5
381	Sherwood, Bentz	S-20N1	122	280	2,89	0,83	19	494	39,2	3,0	38,9
382	Sherwood, Bentz	S-20N2	122	280	2,89	0,83	19	494	38,1	2,9	38,0
383	Sherwood, Bentz	S-40N1	122	280	2,89	0,83	38	494	29,1	2,3	41,5
384	Sherwood, Bentz	S-40N2	122	280	2,89	0,83	38	494	29,1	2,3	34,7
385	Sherwood, Bentz	S-50N1	122	280	2,89	0,83	51	494	43,5	3,2	38,3
386	Sherwood, Bentz	S-50N2	122	280	2,89	0,83	51	494	43,5	3,2	40,3
387	Huber, Kollegger	Re25016n	75	230	3,04	1,17	16	550	58,1	3,1	19,6
388	Huber, Kollegger	Re50016n	150	460	3,04	1,17	16	550	58,1	3,1	67,2
389	Huber, Kollegger	Re100016n	300	920	3,04	1,25	16	550	60,0	3,2	209,7
390	Marti,Jäger	A3_V1	800	162	3,95	1,75	16	546	58,8	4,2	264,7
391	Marti,Jäger	A5_V1	800	174	3,68	1,06	16	546	56,7	4,0	221,3
392	Marti,Jäger	B3_V1	2000	405	3,95	1,75	16	534	53,7	3,9	1275,3
393	Marti,Jäger	B5_V1	2000	435	3,68	1,06	16	534	51,8	4,1	1163,3
394	Yoshida, Bentz	YB2000/0	300	1890	2,86	0,74	10	455	35,4	2,7	230,5

Querkraftversuche an Stahlbetonbalken mit Rechteckquerschnitt ohne Schubbewehrung mit Gleichlast

Nr.	Lit.	Bez.	b	d	a/d	ρι	dg	fy	fc	f _{ct}	Vexp
-	-	-	mm	mm	-	%	mm	MPa	MPa	MPa	kN
1	Leonhardt	12/1	190	273	7,3	2,05	30	465	32,4	2,5	197,2
2	Leonhardt	12/2	190	272	7,4	2,05	30	465	32,4	2,5	160,4
3	Leonhardt	13/1	190	273	9,2	2,05	30	465	32,9	2,6	107,6
4	Leonhardt	13/2	190	272	9,2	2,05	30	465	32,9	2,6	107,6
5	Leonhardt	14/1	190	273	11,0	2,05	30	465	32,3	2,5	68,5
6	Leonhardt	14/2	190	273	11,0	2,05	30	465	32,3	2,5	68,8
7	Leonhardt	15/1	190	272	14,7	2,05	30	465	36,8	2,8	45,3
8	Leonhardt	15/2	190	273	14,7	2,05	30	465	36,8	2,8	48,4
9	Leonhardt	16/1	190	273	18,3	2,05	30	465	34,3	2,7	36,3
10	Leonhardt	16/2	190	274	18,2	2,04	30	465	34,3	2,7	36,1
11	Leonhardt	GA1	190	270	7,4	1,82	30	441	21,4	1,7	122,6
12	Leonhardt	GA2	190	270	7,4	1,78	30	441	21,4	1,7	145,2
13	Leonhardt	G6	190	270	7,4	2,40	30	425	28,0	2,4	196,7
14	Shioya, Iguro	3	300	600	12,0	0,38	10	440	21,1	1,8	k.A.
15	Shioya, Iguro	4	500	1000	12,0	0,44	10	370	27,2	2,1	k.A.
16	Shioya, Iguro	5	500	1000	12,0	0,44	25	370	21,9	2,2	k.A.
17	Shioya, Iguro	6	1000	2000	12,0	0,40	25	370	28,5	2,7	k.A.
18	Shioya, Iguro	7	1500	3000	12,0	0,39	25	360	24,3	2,2	k.A.
19	Ruesch, Haugli	B01	100	200	7,2	3,85	15	428	22,0	2,3	130,0
20	Ruesch, Haugli	B02	100	200	7,2	3,85	15	428	22,0	2,3	119,6
21	Ruesch, Haugli	B03	100	200	7,2	3,85	15	428	22,0	2,3	130,0
22	Ruesch, Haugli	B04	100	200	7,2	3,85	15	428	21,8	2,5	118,9
23	Ruesch, Haugli	B05	100	200	7,2	3,85	15	428	21,8	2,5	111,6
24	Ruesch, Haugli	B06	100	200	7,2	3,85	15	428	21,8	2,5	114,7
25	Feldman, Siess	D1	152	252	11,1	3,33	25	295	30,8	2,4	66,4
26	Feldman, Siess	D2	152	252	11,1	3,33	25	307	38,5	2,9	79,0
27	Feldman, Siess	D3	152	252	13,3	3,33	25	314	33,2	2,6	56,1
28	Feldman, Siess	D6	152	252	11,1	3,33	25	310	23,8	1,9	74,5
29	Padilla	70-3.1-I-8P	500	650	6,2	0,31	20	560	43,5	3,2	247,5
30	Padilla	70-4.8-I-8P	500	650	6,2	0,48	20	532	41,8	3,1	262,0
31	Padilla	70-7.6-I-8P	500	650	6,2	0,76	20	550	37,7	2,9	267,5
32	Padilla	40-3.2-I-8P	500	350	11,4	0,32	20	550	40,7	3,1	92,5
33	Padilla	25-3.4-I-8P	500	200	20,0	0,34	20	550	43,6	3,2	33,9
34	Caldentey	CR1	250	562	5,7	0,79	20	835	31,1	2,4	50,9
35	Caldentey	CR2	250	562	5,7	0,79	20	835	33,6	2,6	55,9

Tabelle B.3: Datenbank StB_o_G

Querkraftversuche an Spannbetonbalken mit Rechteckquerschnitt ohne Schubbewehrung mit Punktlast

Nr	Lit.	Bez.	b	d	a/d	Р	σ _{cp}	ρ	σ _p / f _{ov}	ρι	fy	dg	fc	f _{ct}	V _{cr}	Vexp
-	-	-	mm	mm	-	kN	MPa	%	-	%	MPa	mm	MPa	MPa	kN	kN
1	Kar	A-4	127	178	3,50	83	2,6	0,86	0,29	0,00	0,0	19	28,8	2,3	40,1	54,8
2	Kar	A-5	127	178	3,00	105	3,2	0,86	0,37	0,00	0,0	19	34,5	2,7	51,4	68,5
3	Kar	A-6	127	178	4,00	49	1,5	0,69	0,21	0,00	0,0	19	28,0	2,2	24,5	38,2
4	Kar	A-7	127	178	3,86	83	2,6	0,86	0,29	0,00	0,0	19	30,2	2,4	34,3	45,0
5	Kar	A-8	127	178	4,14	126	3,9	0,86	0,44	0,00	0,0	19	34,1	2,6	39,2	43,1
6	Kar	A-9	127	178	3,86	146	4,5	0,86	0,51	0,00	0,0	19	33,8	2,6	46,5	53,9
7	Kar	A-10	127	178	5,00	146	4,5	0,86	0,51	0,00	0,0	19	31,8	2,5	34,3	40,1
8	Kar	A-12	127	178	4,00	103	3,2	0,69	0,45	0,00	0,0	19	34,9	2,7	36,7	43,6
9	Kar	B-3	102	152	3,50	49	2,4	1,00	0,21	0,00	0,0	19	29,2	2,3	24,5	28,4
10	Kar	B-4	102	152	4,00	48	2,3	1,00	0,21	0,00	0,0	19	32,0	2,5	19,6	28,9
11	Kar	B-5	102	152	4,50	41	2,0	1,00	0,18	0,00	0,0	19	28,0	2,2	17,6	25,5
12	Kar	B-6	102	152	4,67	60	2,9	1,25	0,21	0,00	0,0	19	30,2	2,4	23,0	26,9
13	Kar	B-7	102	152	3,50	66	3,2	1,00	0,29	0,00	0,0	19	33,2	2,6	26,4	39,7
14	Kar	B-9	102	152	5,00	66	3,2	1,00	0,29	0,00	0,0	19	33,3	2,6	19,1	26,0
15	Kar	B-10	102	152	5,00	83	4,0	1,00	0,36	0,00	0,0	19	35,4	2,7	28,4	33,3
16	Sozen et al.	A1143	152	209	6,31	227	4,9	0,89	0,56	0,00	0,0	38	42,9	3,2	42,3	54,0
17	Sozen et al.	A1151	152	214	6,16	126	2,7	0,49	0,52	0,00	0,0	38	20,0	1,6	28,9	30,8
18	Sozen et al.	A1153	152	204	6,48	207	4,4	0,78	0,57	0,00	0,0	38	30,1	2,4	37,8	41,4
19	Sozen et al.	A1196	152	214	6,18	241	5,2	0,93	0,53	0,00	0,0	38	20,0	1,6	37,8	41,8
20	Sozen et al.	A1223	155	237	3,86	126	2,7	0,44	0,52	0,00	0,0	38	39,0	3,0	51,2	59,8
21	Sozen et al.	A1231	152	219	4,17	158	3,4	0,60	0,52	0,00	0,0	10	40,0	3,0	44,5	59,0
22	Sozen et al.	A1234	152	208	4,39	215	4,6	0,89	0,53	0,00	0,0	38	55,1	3,9	62,3	73,4
23	Sozen et al.	A1236	155	233	3,92	118	2,5	0,41	0,55	0,00	0,0	38	23,7	1,9	46,3	47,9
24	Sozen et al.	A1242	152	211	4,34	202	4,4	0,88	0,50	0,00	0,0	38	43,2	3,2	60,0	69,0
25	Sozen et al.	A1246	152	208	4,39	206	4,4	0,72	0,63	0,00	0,0	38	32,1	2,5	51,2	62,1
27	Sozen et al.	A1253	152	218	4,19	150	3,2	0,60	0,50	0,00	0,0	10	23,4	1,9	40,0	53,7
28	Sozen et al.	A1256	152	218	4,19	194	4,2	0,70	0,56	0,00	0,0	10	26,1	2,1	48,9	58,7
29	Sozen et al.	A1260	152	224	4,09	213	4,6	0,67	0,65	0,00	0,0	38	23,1	1,8	60,0	60,0
30	Sozen et al.	A1269	155	206	4,43	176	3,7	0,69	0,53	0,00	0,0	38	20,3	1,6	46,7	54,7
31	Sozen et al.	A1273	152	214	4,27	204	4,4	0,87	0,50	0,00	0,0	38	24,5	1,9	51,2	62,4
32	Sozen et al.	A1281	152	220	4,16	193	4,2	0,70	0,56	0,00	0,0	10	17,9	1,4	47,8	51,3
33	Sozen et al.	A1439	152	212	2,87	113	2,4	0,44	0,54	0,00	0,0	38	23,1	1,8	62,3	64,4
34	Sozen et al.	A1444	152	216	2,82	131	2,8	0,49	0,54	0,00	0,0	38	23,1	1,8	61,2	71,1
35	Sozen et al.	A1455	152	217	2,81	162	3,5	0,61	0,54	0,00	0,0	38	22,9	1,8	73,4	80,6
36	Sozen et al.	A1468	152	214	2,85	147	3,2	0,55	0,54	0,00	0,0	38	16,8	1,3	64,5	66,4
37	Sozen et al.	A2129	152	215	6,15	42	0,9	0,31	0,28	0,00	0,0	38	23,1	1,8	15,6	17,8
38	Sozen et al.	A2139	152	227	5,81	57	1,2	0,41	0,27	0,00	0,0	38	21,6	1,7	17,8	24,2

Tabelle B.4: Datenbank SpB_ohne

Nr	Lit.	Bez.	b	d	a/d	Р	σ_{cp}	ρ _p	σ _p / f _{nv}	ρι	fy	\mathbf{d}_{g}	f _c	f _{ct}	V _{cr}	Vexp
-	-	-	mm	mm	-	kN	MPa	%	-	%	MP a	mm	MPa	MP a	kN	kN
39	Sozen et al.	A2151	152	206	6,40	123	2,6	0,96	0,27	0,00	0	38	38,8	2,9	31,1	38,1
40	Sozen et al.	A2220	152	215	4,26	48	1,0	0,35	0,29	0,00	0	38	36,9	2,8	26,7	32,2
41	Sozen et al.	A2224	152	224	4,09	39	0,8	0,28	0,28	0,00	0	38	23,9	1,9	22,2	31,2
42	Sozen et al.	A2226	152	236	3,88	39	0,8	0,32	0,24	0,00	0	38	25,3	2,0	31,1	38,6
43	Sozen et al.	A2227	152	213	4,30	47	1,0	0,35	0,29	0,00	0	38	26,6	2,1	26,7	30,8
44	Sozen et al.	A2228	155	222	4,11	39	0,8	0,33	0,24	0,00	0	38	24,0	1,9	24,5	28,6
45	Sozen et al.	A2231	152	205	4,47	70	1,5	0,36	0,43	0,00	0	38	24,3	1,9	25,1	33,2
46	Sozen et al.	A2234	152	212	4,32	61	1,3	0,47	0,28	0,00	0	38	28,6	2,3	28,9	30,6
47	Sozen et al.	A2236	152	212	4,31	69	1,5	0,35	0,42	0,00	0	38	19,9	1,6	26,7	32,7
48	Sozen et al.	A2239	152	224	4,09	28	0,6	0,33	0,17	0,00	0	38	17,8	1,4	22,2	23,8
49	Sozen et al.	A2240	152	208	4,39	122	2,6	0,77	0,35	0,00	0	38	39,9	3,0	46,7	58,7
50	Sozen et al.	A2249	152	208	4,39	96	2,1	0,77	0,27	0,00	0	38	32,8	2,6	35,6	51,0
51	Sozen et al.	A3222	152	238	3,84	19	0,4	0,31	0,12	0,00	0	38	29,6	2,3	26,7	31,2
52	Sozen et al.	A3227	152	233	3,93	8	0,2	0,32	0,05	0,00	0	38	19,3	1,5	26,7	27,8
53	Sozen et al.	A3237	152	208	4,39	8	0,2	0,77	0,02	0,00	0	38	42,2	3,2	23,6	38,9
54	Sozen et al.	A3249	152	208	4,39	58	1,2	0,77	0,16	0,00	0	38	32,8	2,6	28,0	46,5
55	König, Zink	SV-1,1	350	558	4,66	1098	3,9	0,29	0,62	0,41	500	16	93,0	4,6	356,0	490,0
57	König, Zink	SV-2,1	175	309	3,97	274	3,9	0,26	0,62	2,33	500	11	109,3	7,2	136,8	177,0
59	König, Zink	SV-3,1	350	543	4,78	2173	7,8	0,59	0,62	0,32	500	16	83,5	4,5	541,6	717,0
61	König, Zink	SV-4,1	350	291	4,20	1086	7,8	0,55	0,62	1,93	500	16	97,3	5,1	281,6	506,0
63	König, Zink	SV-5,1	350	526	4,94	3226	11,5	0,91	0,61	0,22	500	16	93,0	5,1	721,7	721,7
65	König, Zink	SV-6,1	230	266	4,60	1075	11,7	0,92	0,61	1,03	500	16	99,0	5,0	245,7	328,0
67	Saqan et al.	V-4-0	362	610	3,33	480	1,9	0,18	0,73	0,00	413	20	52,1	3,7	205,0	244,0
68	Saqan et al.	V-4-0.93	368	627	3,24	480	1,8	0,17	0,73	0,26	413	20	52,7	3,8	265,0	334,0
69	Saqan et al.	V-4-2.37	373	634	3,20	480	1,8	0,17	0,73	0,64	413	20	53,4	3,8	296,0	367,0
70	Saqan et al.	V-7-0	359	610	3,33	491	1,9	0,32	0,43	0,00	413	20	54,5	3,9	256,0	370,0
71	Saqan et al.	V-7-1.84	362	626	3,25	491	1,9	0,30	0,43	0,52	413	20	53,1	3,8	298,0	484,0
72	Saqan et al.	V-7-2.37	356	628	3,24	491	1,9	0,31	0,43	0,68	413	20	53,1	3,8	305,0	428,0
73	Saqan et al.	V-10-0	362	610	3,33	494	1,9	0,45	0,30	0,00	413	20	51,7	3,7	287,0	406,0
74	Saqan et al.	V-10-1.51	362	620	3,28	494	1,9	0,44	0,30	0,43	413	20	51,7	3,7	300,0	440,0
75	Saqan et al.	V-10-2.37	362	624	3,26	494	1,9	0,44	0,30	0,67	413	20	51,7	3,7	322,0	440,0
76	Zwoyer et al.	S-1	152	233	3,93	8	0,2	0,32	0,05	0,00	0	25	25,0	2,0	0,0	27,7
77	Zwoyer et al.	S-2	152	236	3,88	39	0,8	0,32	0,24	0,00	0	25	25,2	2,0	0,0	38,6
78	Zwoyer et al.	S-3	152	238	3,84	19	0,4	0,31	0,12	0,00	0	25	29,6	2,3	0,0	31,2
79	Zwoyer et al.	S-4	152	203	4,50	227	4,9	0,92	0,56	0,00	0	25	21,3	1,7	0,0	47,8
80	Zwoyer et al.	S-5	152	211	4,34	202	4,4	0,88	0,50	0,00	0	25	43,2	3,2	0,0	69,0
81	Zwoyer et al.	S-6	152	208	4,39	215	4,6	0,89	0,53	0,00	0	25	55,1	3,9	0,0	73,4
82	Zwoyer et al.	S-7	152	214	4,27	204	4,4	0,87	0,50	0,00	0	25	24,5	1,9	0,0	62,4
83	Zwoyer et al.	S-8	156	208	4,39	8	0,2	0,76	0,02	0,00	0	25	42,2	3,2	0,0	38,9
84	Zwoyer et al.	S-9	152	208	4,39	96	2,1	0,77	0,27	0,00	0	25	32,8	2,6	0,0	51,0
85	Zwoyer et al.	S-10	152	208	4,39	122	2,6	0,77	0,35	0,00	0	25	39,9	3,0	0,0	58,7

Nr.	Lit.	Bez.	b	d	a/d	Ρ	σ_{cp}	ρ _p	σ _p / f _{py}	ρι	fy	d _g	f _c	f _{ct}	V_{cr}	Vexp
-	-	-	mm	mm	-	kN	MPa	%	-	%	MPa	mm	MPa	MPa	kN	kN
86	Zwoyer et al.	S-11	152	224	4,09	28	0,6	0,33	0,17	0,00	0	25	17,8	1,4	0,0	23,8
87	Zwoyer et al.	S-12	152	208	4,39	52	1,1	0,77	0,15	0,00	0	25	32,8	2,6	0,0	46,5
88	Zwoyer et al.	S-13	152	208	4,39	237	5,1	0,77	0,67	0,00	0	25	33,4	2,6	0,0	66,6
89	Zwoyer et al.	S-14	152	208	4,39	206	4,4	0,72	0,63	0,00	0	25	32,1	2,5	0,0	62,1
90	Zwoyer et al.	S-15	152	212	4,31	69	1,5	0,35	0,42	0,00	0	25	19,9	1,6	0,0	32,7
91	Zwoyer et al.	S-16	152	205	4,47	70	1,5	0,36	0,43	0,00	0	25	24,3	1,9	0,0	33,2
92	Zwoyer et al.	S-17	152	224	4,09	213	4,6	0,67	0,65	0,00	0	25	23,1	1,8	0,0	60,0
93	Zwoyer et al.	S-18	152	211	4,33	61	1,3	0,47	0,28	0,00	0	25	28,6	2,3	0,0	30,6
94	Zwoyer et al.	S-19	152	213	4,30	47	1,0	0,35	0,29	0,00	0	25	26,6	2,1	0,0	30,8
95	Zwoyer et al.	S-20	152	215	4,26	48	1,0	0,35	0,29	0,00	0	25	36,9	2,8	0,0	32,2
96	Zwoyer et al.	S-21	152	209	6,55	227	4,9	0,89	0,56	0,00	0	25	42,9	3,2	0,0	54,0
97	Zwoyer et al.	S-22	152	206	6,65	123	2,6	0,96	0,27	0,00	0	25	38,8	2,9	0,0	38,1
98	Zwoyer et al.	S-23	152	204	6,73	207	4,4	0,78	0,57	0,00	0	25	30,1	2,4	0,0	41,4
99	Zwoyer et al.	S-24	152	214	6,42	241	5,2	0,93	0,53	0,00	0	25	20,0	1,6	0,0	41,8
100	Zwoyer et al.	S-25	152	214	6,40	126	2,7	0,49	0,52	0,00	0	25	20,0	1,6	0,0	30,8
101	Zwoyer et al.	S-26	152	227	6,03	57	1,2	0,41	0,27	0,00	0	25	21,6	1,7	0,0	24,2
102	Zwoyer et al.	S-27	152	215	6,39	42	0,9	0,31	0,28	0,00	0	25	23,1	1,8	0,0	17,8
103	Zwoyer et al.	S-28	152	224	4,09	39	0,8	0,28	0,28	0,00	0	25	23,9	1,9	0,0	31,2
104	Zwoyer et al.	S-29	152	217	2,81	162	3,5	0,61	0,54	0,00	0	25	22,9	1,8	0,0	80,6
105	Zwoyer et al.	S-30	152	216	2,82	131	2,8	0,49	0,54	0,00	0	25	23,1	1,8	0,0	71,1
106	Zwoyer et al.	S-31	152	214	2,85	147	3,2	0,55	0,54	0,00	0	25	16,8	1,3	0,0	66,4
107	Zwoyer et al.	S-32	152	212	2,87	113	2,4	0,44	0,54	0,00	0	25	23,1	1,8	0,0	64,4
108	Zwoyer et al.	S-33	152	218	4,19	150	3,2	0,60	0,50	0,00	0	10	23,4	1,9	0,0	53,7
109	Zwoyer et al.	S-34	152	219	4,17	158	3,4	0,60	0,52	0,00	0	10	40,0	3,0	0,0	59,0

Querkraftversuche an Stahlbetonbalken mit geringer Schubbewehrung mit Punktlast

Nr.	Lit.	Bez.	bw	b _{fc}	h _{fc}	d	a/d	ρι	ρ ι,w	ρ _{s,c}	fy
-	-	-	mm	mm	mm	mm	-	%	%	%	MPa
1	Caldera et al.	H50/2	200	200	0	353	3,06	2,01	2,28	0,14	530
2	Caldera et al.	H50/3	200	200	0	351	3,08	2,01	2,29	0,14	530
3	Caldera et al.	H50/4	200	200	0	351	3,08	2,62	2,29	0,14	530
4	Caldera et al.	H60/2	200	200	0	353	3,06	2,01	2,28	0,14	530
5	Caldera et al.	H60/3	200	200	0	351	3,08	2,01	2,29	0,14	530
6	Caldera et al.	H60/4	200	200	0	351	3,08	2,62	2,99	0,14	530
7	Caldera et al.	H75/2	200	200	0	353	3,06	2,01	2,28	0,14	530
8	Caldera et al.	H75/3	200	200	0	351	3,08	2,01	2,29	0,14	530
9	Caldera et al.	H75/4	200	200	0	351	3,08	2,62	2,99	0,14	530
10	Caldera et al.	H100/2	200	200	0	353	3,06	2,01	2,28	0,14	530
11	Caldera et al.	H100/3	200	200	0	351	3,08	2,01	2,29	0,14	530
12	Caldera et al.	H100/4	200	200	0	351	3,08	2,62	2,99	0,14	530
13	Bahl et al.	B1S	240	240	0	300	3,00	1,08	1,26	0,22	426
14	Bahl et al.	B2S	240	240	0	600	3,00	1,16	1,26	0,11	426
15	Bahl et al.	B3S	240	240	0	900	3,00	1,19	1,26	0,07	426
16	Bahl et al.	B4S	240	240	0	1200	3,00	1,21	1,26	0,05	426
17	Krefeld	29a-2	254	254	0	456	4,01	2,00	2,23	0,00	300
18	Krefeld	29b-2	254	254	0	456	4,01	2,00	2,23	0,00	300
19	Krefeld	29c-2	254	254	0	456	4,01	2,00	2,23	0,00	300
20	Krefeld	29d-2	254	254	0	456	4,01	2,00	2,23	0,00	300
21	Krefeld	29e-2	254	254	0	456	4,01	2,00	2,23	0,00	300
22	Krefeld	29f-2	254	254	0	456	4,01	2,00	2,23	0,00	300
23	Krefeld	29g-2	254	254	0	456	4,01	2,00	2,23	0,00	300
24	Angelakos, Bentz	BM100	300	300	0	925	2,92	0,70	0,76	0,00	550
25	Angelakos, Bentz	DB120M	300	300	0	925	2,92	0,93	1,01	0,00	550
26	Angelakos, Bentz	DB140M	300	300	0	925	2,92	0,93	1,01	0,00	550
27	Angelakos, Bentz	DB165M	300	300	0	925	2,92	0,93	1,01	0,00	550
28	Angelakos, Bentz	DB180M	300	300	0	925	2,92	0,93	1,01	0,00	550
29	Johnson, Ramirez	1	305	305	0	539	3,10	2,21	2,50	0,73	525
30	Johnson, Ramirez	2	305	305	0	539	3,10	2,21	2,50	0,79	525
31	Johnson, Ramirez	3	305	305	0	539	3,10	2,21	2,50	0,79	525
32	Johnson, Ramirez	4	305	305	0	539	3,10	2,21	2,50	0,79	525
33	Johnson, Ramirez	5	305	305	0	539	3,10	2,21	2,50	0,84	525
34	Johnson, Ramirez	7	305	305	0	539	3,10	2,21	2,50	0,79	525
35	Johnson, Ramirez	8	305	305	0	539	3,10	2,21	2,50	0,79	525
36	Yoon et al.	N1-N	375	375	0	665	3,23	2,51	2,83	0,06	400
37	Yoon et al.	N2-S	375	375	0	665	3,23	2,51	2,83	0,06	400
38	Yoon et al.	N2-N	375	375	0	665	3,23	2,51	2,83	0,06	400

Tabelle B.5: Datenbank StB_mit

2

		.5									2
Nr.	Lit.	Bez.	Øw	Sw	s _{w/} /d	ρw	f _{yw}	dg	fc	fct	Vexp
-	-	-	mm	mm	-	%	MPa	mm	MPa	MPa	kN
1	Caldera et al.	H50/2	6,0	260	0,74	0,109	530	12	49,9	3,6	177,6
2	Caldera et al.	H50/3	8,0	210	0,60	0,239	540	12	49,9	3,6	242,1
3	Caldera et al.	H50/4	8,0	210	0,60	0,239	540	12	49,9	3,6	246,3
4	Caldera et al.	H60/2	6,0	200	0,57	0,141	530	12	60,8	4,2	179,7
5	Caldera et al.	H60/3	8,0	210	0,60	0,239	530	12	60,8	4,2	258,8
6	Caldera et al.	H60/4	8,0	210	0,60	0,239	530	12	60,8	4,2	308,7
7	Caldera et al.	H75/2	6,0	200	0,57	0,141	530	12	68,9	3,7	203,9
8	Caldera et al.	H75/3	8,0	210	0,60	0,239	530	12	68,9	3,7	269,4
9	Caldera et al.	H75/4	8,0	210	0,60	0,239	530	12	68,9	3,7	255,2
10	Caldera et al.	H100/2	6,0	165	0,47	0,171	530	12	87,0	4,1	225,6
11	Caldera et al.	H100/3	8,0	210	0,60	0,239	540	12	87,0	4,1	253,6
12	Caldera et al.	H100/4	8,0	210	0,60	0,239	540	12	87,0	4,1	266,5
13	Bahl et al.	B1S	6,0	160	0,53	0,147	441	30	28,3	2,3	127,5
14	Bahl et al.	B2S	6,0	160	0,27	0,147	441	30	26,4	2,4	247,7
15	Bahl et al.	B3S	6,0	160	0,18	0,147	441	30	27,7	2,7	365,4
16	Bahl et al.	B4S	6,0	160	0,13	0,147	441	30	26,8	2,1	459,1
17	Krefeld	29a-2	6,4	229	0,50	0,109	372	16	37,2	2,8	216,6
18	Krefeld	29b-2	6,4	229	0,50	0,109	372	16	41,4	3,1	202,4
19	Krefeld	29c-2	6,4	229	0,50	0,109	372	16	24,1	1,9	161,5
20	Krefeld	29d-2	6,4	229	0,50	0,109	372	16	30,4	2,4	165,0
21	Krefeld	29e-2	6,4	229	0,50	0,109	372	16	48,5	3,5	206,4
22	Krefeld	29f-2	6,4	229	0,50	0,109	372	16	41,8	3,1	234,4
23	Krefeld	29g-2	6,4	229	0,50	0,109	372	16	15,7	1,2	149,9
24	Angelakos, Bentz	BM100	9,5	600	0,65	0,079	508	10	47,0	3,5	343,0
25	Angelakos, Bentz	DB120M	9,5	600	0,65	0,079	508	10	21,0	1,7	282,0
26	Angelakos, Bentz	DB140M	9,5	300	0,32	0,079	508	10	38,0	2,9	277,0
27	Angelakos, Bentz	DB165M	9,5	300	0,32	0,079	508	10	65,0	4,3	452,0
28	Angelakos, Bentz	DB180M	9,5	300	0,32	0,079	508	10	80,0	4,7	342,0
29	Johnson, Ramirez	1	6,4	133	0,25	0,156	479	19,05	36,4	2,8	340,6
30	Johnson, Ramirez	2	6,4	267	0,50	0,078	479	19,05	36,4	2,8	224,5
31	Johnson, Ramirez	3	6,4	267	0,50	0,078	479	19,05	72,3	4,5	264,6
32	Johnson, Ramirez	4	6,4	267	0,50	0,078	479	19,05	72,3	4,5	317,9
33	Johnson, Ramirez	5	6,4	133	0,25	0,234	479	19,05	55,8	4,0	384,8
34	Johnson, Ramirez	7	6,4	267	0,50	0,078	479	19,05	51,3	3,7	282,4
35	Johnson, Ramirez	8	6,4	267	0,50	0,078	479	19,05	51,3	3,7	260,1
36	Yoon et al.	N1-N	8,0	325	0,49	0,082	430	20	36,0	3,1	457,0
37	Yoon et al.	N2-S	9,5	465	0,70	0,081	430	20	36,0	3,1	363,0
38	Yoon et al.	N2-N	9,5	325	0,49	0,116	430	20	36,0	3,1	483,0

Forts	etzung Tabelle B	.5									1
Nr.	Lit.	Bez.	bw	b _{fc}	h _{fc}	d	a/d	ρι	ρ ι,w	ρ _{s,c}	fy
-	-	-	mm	mm	mm	mm	-	%	%	%	MPa
39	Yoon et al.	M1-N	375	375	0	665	3,23	2,51	2,83	0,06	400
40	Yoon et al.	M2-S	375	375	0	665	3,23	2,51	2,83	0,06	400
41	Yoon et al.	M2-N	375	375	0	665	3,23	2,51	2,83	0,06	400
42	Yoon et al.	H1-N	375	375	0	665	3,23	2,51	2,83	0,06	400
43	Yoon et al.	H2-S	375	375	0	665	3,23	2,51	2,83	0,06	400
44	Yoon et al.	H2-N	375	375	0	665	3,23	2,51	2,83	0,06	400
45	Campana, Muttoni	SC12	302	302	0	354	3,45	1,30	1,49	0,22	580
46	Campana, Muttoni	SC13	303	303	0	354	3,45	0,93	1,06	0,22	580
47	Campana, Muttoni	SC16	302	302	0	346	3,53	1,31	1,52	0,23	580
48	Campana, Muttoni	SC17	304	304	0	350	3,49	0,93	1,07	0,22	580
49	Ozcebe et al.	ACI56	150	150	0	310	5,00	2,98	3,46	0,34	450
50	Ozcebe et al.	TH56	150	150	0	310	5,00	2,98	3,46	0,34	450
51	Ozcebe et al.	TS56	150	150	0	310	5,00	2,98	3,46	0,34	450
52	Ozcebe et al.	ACI59	150	150	0	310	5,00	3,82	4,43	0,34	435
53	Ozcebe et al.	TH59	150	150	0	310	5,00	3,82	4,43	0,34	435
54	Ozcebe et al.	TS59	150	150	0	310	5,00	3,82	4,43	0,34	435
55	Ozcebe et al.	ACI36	150	150	0	310	3,00	2,23	2,59	0,34	450
56	Ozcebe et al.	TH36	150	150	0	310	3,00	2,23	2,59	0,34	450
57	Ozcebe et al.	TS36	150	150	0	310	3,00	2,23	2,59	0,34	450
58	Ozcebe et al.	ACI39	150	150	0	310	3,00	2,65	3,08	0,34	439
59	Ozcebe et al.	TH39	150	150	0	310	3,00	2,65	3,08	0,34	439
60	Ozcebe et al.	TS39	150	150	0	310	3,00	2,65	3,08	0,34	439
61	Yoshida, Bentz	YB2000/6	300	300	0	1890	2,86	0,70	0,74	0,16	457
62	Yoshida, Bentz	YB2000/9	300	300	0	1890	2,86	0,70	0,74	0,16	457
63	Higgins et.al.	1T18	356	914	152	1095	3,06	1,17	1,55	0,07	463
64	Higgins et.al.	2T10	356	914	152	1095	3,06	1,17	1,55	0,07	523
65	Higgins et.al.	2T12	356	914	152	1095	3,06	1,17	1,55	0,07	523
66	Higgins et.al.	3T18	356	914	152	1095	3,06	1,17	1,55	0,07	481
67	Higgins et.al.	7T12	356	914	152	1095	2,74	1,17	1,55	0,07	516
68	Higgins et.al.	8T12-B3	356	914	152	1095	3,06	1,17	1,55	0,07	516
69	Higgins et.al.	10T24-B4	356	914	152	1095	3,06	1,17	1,55	0,07	478
70	Tompos,Frosch	V36-2	457	457	0	851	3,00	0,92	0,99	0,04	483
71	Tompos,Frosch	V36-3	457	457	0	851	3,00	0,92	0,99	0,04	483
72	Tompos,Frosch	V18-2	229	229	0	425	3,00	0,91	1,04	0,15	556
73	Tompos,Frosch	V18-2c	229	229	0	425	3,00	0,91	1,04	0,15	556
74	Regan	R8	152	152	0	272	3,36	1,30	1,46	0,34	630
75	Regan	R9	152	152	0	272	3,36	1,30	1,46	0,34	630
76	Regan	R10	152	152	0	272	3,36	0,87	0,97	0,34	630
17	Regan	R11	152	152	U	272	3,36	1,73	1,95	0,34	630
78	Regan	R12	152	152	0	254	3,60	3,47	4,17	0,37	630
79	Regan	R13	152	152	0	254	3,60	3,47	4,17	0,37	630

Fortsetzung Tabelle B.5											2
Nr.	Lit.	Bez.	Øw	Sw	s _{w/} /d	ρw	f _{yw}	dg	fc	fct	Vexp
-	-	-	mm	mm	-	%	MPa	mm	MPa	MPa	kN
39	Yoon et al.	M1-N	8,0	325	0,49	0,082	430	10	67,0	4,6	405,0
40	Yoon et al.	M2-S	9,5	325	0,49	0,116	430	10	67,0	4,6	552,0
41	Yoon et al.	M2-N	9,5	230	0,35	0,164	430	10	67,0	4,6	689,0
42	Yoon et al.	H1-N	8,0	325	0,49	0,082	430	10	87,0	6,1	483,0
43	Yoon et al.	H2-S	9,5	270	0,41	0,140	430	10	87,0	6,1	598,0
44	Yoon et al.	H2-N	9,5	160	0,24	0,236	430	10	87,0	6,1	721,0
45	Campana, Muttoni	SC12	6,0	150	0,42	0,062	497	16	41,5	2,9	176,0
46	Campana, Muttoni	SC13	6,0	150	0,42	0,062	497	16	43,1	2,9	150,0
47	Campana, Muttoni	SC16	6,0	150	0,43	0,062	497	16	55,7	3,2	199,0
48	Campana, Muttoni	SC17	6,0	150	0,43	0,062	497	16	57,2	3,2	153,0
49	Ozcebe et al.	ACI56	4,0	120	0,39	0,140	255	15	58,0	4,1	93,9
50	Ozcebe et al.	TH56	4,0	100	0,32	0,168	255	15	63,0	4,2	103,8
51	Ozcebe et al.	TS56	4,0	70	0,23	0,239	255	15	61,0	4,2	129,5
52	Ozcebe et al.	ACI59	4,0	120	0,39	0,140	255	15	82,0	4,7	96,8
53	Ozcebe et al.	TH59	4,0	90	0,29	0,186	255	15	75,0	4,5	119,6
54	Ozcebe et al.	TS59	4,0	60	0,19	0,279	255	15	82,0	4,7	125,7
55	Ozcebe et al.	ACI36	4,0	120	0,39	0,140	255	15	75,0	4,5	105,6
56	Ozcebe et al.	TH36	4,0	100	0,32	0,168	255	15	75,0	4,5	141,2
57	Ozcebe et al.	TS36	4,0	70	0,23	0,239	255	15	75,0	4,5	156,2
58	Ozcebe et al.	ACI39	4,0	120	0,39	0,140	255	15	73,0	4,5	112,1
59	Ozcebe et al.	TH39	4,0	80	0,26	0,209	255	15	73,0	4,5	143,2
60	Ozcebe et al.	TS39	4,0	60	0,19	0,279	255	15	73,0	4,5	179,5
61	Yoshida, Bentz	YB2000/6	19,1	1.350	0,71	0,070	465	10	34,5	2,7	526,5
62	Yoshida, Bentz	YB2000/9	28,6	2.700	1,43	0,079	470	10	31,8	2,5	448,5
63	Higgins et.al.	1T18	12,7	457	0,42	0,156	350	19	34,0	2,6	742,3
64	Higgins et.al.	2T10	12,7	254	0,23	0,280	350	19	24,5	1,9	902,4
65	Higgins et.al.	2T12	12,7	305	0,28	0,234	350	19	24,3	1,9	844,6
66	Higgins et.al.	3T18	12,7	457	0,42	0,156	350	19	27,4	2,2	668,9
67	Higgins et.al.	7T12	12,7	305	0,28	0,234	350	19	29,5	2,3	944,7
68	Higgins et.al.	8T12-B3	12,7	305	0,28	0,234	350	19	35,0	2,7	806,8
69	Higgins et.al.	10T24-B4	12,7	610	0,56	0,117	350	19	23,6	1,9	539,9
70	Tompos,Frosch	V36-2	6,4	165	0,19	0,084	483	19,05	42,7	3,5	487,3
71	Tompos,Frosch	V36-3	9,5	371	0,44	0,084	538	19,05	42,7	3,5	511,7
72	Tompos,Frosch	V18-2	6,4	186	0,44	0,149	483	19,05	35,9	3,5	172,1
73	Tompos,Frosch	V18-2c	6,4	186	0,44	0,149	483	19,05	35,9	3,5	153,0
74	Regan	R8	5,6	152	0,56	0,213	270	19,05	27,4	2,2	81,0
75	Regan	R9	6,3	102	0,38	0,402	280	19,05	30,3	2,4	107,0
76	Regan	R10	5,6	152	0,56	0,213	270	19,05	30,3	2,4	77,0
77	Regan	R11	5,6	152	0,56	0,213	270	19,05	26,9	2,1	91,0
78	Regan	R12	5,6	152	0,60	0,213	270	19,05	34,8	2,7	112,0
79	Regan	R13	6,3	102	0,40	0,402	280	19,05	33,1	2,6	153,0

Fortsetzung Tabelle B.5										1	
Nr.	Lit.	Bez.	bw	b _{fc}	h _{fc}	d	a/d	ρι	ρι,w	ρ _{s,c}	fy
-	-	-	mm	mm	mm	mm	I	%	%	%	MPa
80	Regan	R14	152	152	0	272	3,36	1,30	1,46	0,34	630
81	Regan	R15	152	152	0	254	3,60	3,47	4,17	1,47	630
82	Regan	R16	152	152	0	254	3,60	3,47	4,17	2,94	630
83	Regan	R17	152	152	0	272	3,36	1,30	1,46	0,69	630
84	Regan	R20	152	152	0	272	3,36	1,30	1,46	0,34	630
85	Regan	R21	152	152	0	254	3,60	3,47	4,17	0,37	630
86	Regan	R22	152	152	0	272	4,50	1,30	1,46	0,34	630
87	Regan	R23	152	152	0	272	2,24	1,30	1,46	0,34	630
88	Regan	R24	152	152	0	254	5,05	3,47	4,17	2,62	630
89	Regan	R25	152	152	0	254	3,60	3,47	4,17	2,62	630
90	Regan	R26	152	152	0	254	2,40	3,47	4,17	2,62	630
91	Regan	R28	152	152	0	254	3,60	3,47	4,17	2,62	630
92	Regan	T1	152	610	76	272	3,28	0,63	1,25	1,07	630
93	Regan	Т3	152	610	76	272	3,28	0,74	1,46	1,07	630
94	Regan	T4	152	610	76	272	3,28	0,99	1,95	1,07	630
95	Regan	T5	152	610	76	272	3,28	0,74	1,46	1,07	630
96	Regan	Т6	152	610	76	254	3,50	1,98	4,17	1,15	630
97	Regan	T7	152	610	76	264	3,37	1,49	3,01	1,10	630
98	Regan	Т8	152	610	76	254	3,50	1,98	4,17	1,15	630
99	Regan	Т9	152	610	76	254	3,50	1,98	4,17	1,15	630
100	Regan	T10	152	610	76	272	3,51	0,74	1,46	1,07	630
101	Regan	T13	152	610	76	272	3,28	0,74	1,46	1,07	630
102	Regan	T15	152	610	76	254	7,10	1,98	4,17	1,15	630
103	Regan	T16	152	610	76	254	7,10	1,98	4,17	1,15	630
104	Regan	T17	152	610	76	254	7,10	1,98	4,17	1,15	630
105	Regan	T19	152	610	76	254	5,30	1,98	4,17	1,15	630
106	Regan	T20	152	610	76	254	5,30	1,98	4,17	1,15	630
107	Regan	T21	152	610	76	254	3,50	1,98	4,17	1,15	630
108	Regan	T23	152	610	76	254	2,30	1,98	4,17	1,15	630
109	Regan	T24	152	610	76	254	3,50	1,98	4,17	1,15	630
110	Regan	T25	152	610	76	272	3,28	0,74	1,46	1,07	630
111	Regan	T26	152	610	76	254	3,50	1,98	4,17	1,15	630
112	Regan	T27	152	610	76	254	3,50	1,98	4,17	1,15	630
113	Regan	T29	152	610	76	254	2,30	1,98	4,17	1,15	630
114	Regan	Т30	152	610	76	272	2,15	0,74	1,46	1,07	630
115	Regan	131	152	610	76	272	4,39	0,74	1,46	1,07	630
116	Regan	132	152	610	76	254	3,50	1,98	4,17	1,15	630
117	Regan	133	152	610	76	272	3,51	0,74	1,46	1,07	630
118	Regan	134	152	305	76	254	5,30	2,77	4,17	1,15	630
119	Regan	135	152	1066	76	254	5,30	1,39	4,17	1,15	630
120	Regan	136	152	610	142	254	3,50	1,44	4,17	1,15	630

Fortsetzung Tabelle B.5											2
Nr.	Lit.	Bez.	Øw	Sw	s _{w/} /d	ρw	fyw	dg	fc	fct	Vexp
-	-	-	mm	mm	-	%	MPa	mm	MPa	MPa	kN
80	Regan	R14	5,6	229	0,84	0,142	270	19,05	29,8	2,3	91,0
81	Regan	R15	6,3	102	0,40	0,402	280	19,05	30,7	2,4	143,0
82	Regan	R16	6,3	102	0,40	0,402	280	19,05	32,4	2,5	143,0
83	Regan	R17	5,6	152	0,56	0,213	270	19,05	13,1	0,9	71,0
84	Regan	R20	5,6	152	0,56	0,213	270	19,05	44,0	3,3	92,0
85	Regan	R21	6,3	102	0,40	0,402	280	19,05	49,3	3,6	153,0
86	Regan	R22	5,6	152	0,56	0,213	270	19,05	30,3	2,4	81,0
87	Regan	R23	5,6	152	0,56	0,213	270	19,05	31,0	2,4	101,0
88	Regan	R24	5,6	152	0,60	0,213	270	19,05	31,7	2,5	94,0
89	Regan	R25	5,6	152	0,60	0,213	270	19,05	31,6	2,5	107,0
90	Regan	R26	5,6	152	0,60	0,213	270	19,05	37,4	2,9	153,0
91	Regan	R28	9,5	114	0,45	0,818	270	19,05	32,4	2,5	183,0
92	Regan	T1	5,6	152	0,56	0,213	270	19,05	31,2	2,4	110,1
93	Regan	Т3	5,6	152	0,56	0,213	270	19,05	30,0	2,4	105,1
94	Regan	T4	5,6	152	0,56	0,213	270	19,05	35,6	2,7	110,1
95	Regan	T5	6,3	102	0,38	0,402	280	19,05	32,1	2,5	139,1
96	Regan	T6	9,5	114	0,45	0,822	270	19,05	28,8	2,3	205,1
97	Regan	T7	5,6	152	0,58	0,213	280	19,05	29,0	2,3	109,1
98	Regan	Т8	5,6	152	0,60	0,213	280	19,05	33,0	2,6	124,1
99	Regan	Т9	6,3	102	0,40	0,402	280	19,05	22,1	1,8	154,1
100	Regan	T10	5,6	229	0,84	0,142	280	19,05	31,0	2,4	87,1
101	Regan	T13	5,6	152	0,56	0,213	270	19,05	13,9	1,0	90,1
102	Regan	T15	5,6	152	0,60	0,213	270	19,05	34,4	2,7	104,1
103	Regan	T16	5,6	229	0,90	0,142	270	19,05	36,4	2,8	89,1
104	Regan	T17	6,3	102	0,40	0,402	280	19,05	36,7	2,8	134,1
105	Regan	T19	5,6	152	0,60	0,213	270	19,05	31,4	2,5	106,1
106	Regan	T20	6,3	102	0,40	0,402	280	19,05	32,9	2,6	138,1
107	Regan	T21	9,5	114	0,45	0,822	270	19,05	33,6	2,6	149,1
108	Regan	123	6,3	102	0,40	0,402	280	19,05	32,7	2,5	194,1
109	Regan	124	9,5	114	0,45	0,822	270	19,05	34,8	2,7	169,1
110	Regan	125	5,6	152	0,56	0,213	270	19,05	54,8	3,9	114,1
111	Regan	126	6,3	102	0,40	0,402	280	19,05	53,9	3,8	179,1
112	Regan	127	6,3	102	0,40	0,402	280	19,05	14,1	1,0	132,1
113	Regan	129	5,6	152	0,60	0,213	270	19,05	35,4	2,7	152,1
114	Regan	130	5,6	152	0,56	0,213	270	19,05	29,6	2,3	109,1
115	Regan	131	5,6	152	0,56	0,213	270	19,05	29,7	2,3	95,1
116	Regan	132	9,5	114	0,45	0,822	270	19,05	29,2	2,3	216,1
117	Regan	133	6,3 5 0	102	0,38	0,402	280	19,05	38,5 22.0	2,9 2.5	105,1
118	Regan	134	5,6	152	0,60	0,213	270	19,05	32,6 20.0	2,5	112,0
119	Regan	135	5,6	152	0,60	0,213	270	19,05	32,6	2,5	115,1
120	Regan	136	6,3	102	0,40	0,402	280	19,05	23,3	1,8	179,1

1

Nr.	Lit.	Bez.	bw	b _{fc}	h _{fc}	d	a/d	ρι	ρ ι,w	ρ _{s,c}	fy
-	-	-	mm	mm	mm	mm	-	%	%	%	MPa
121	Regan	T37	152	610	76	254	3,50	1,98	4,17	1,15	630
122	Regan	Т38	152	610	142	254	3,50	1,44	4,17	1,15	630
123	Huber et al.	Re250m	75	75	0	230	3,04	1,07	1,17	0,16	550
124	Huber et al.	Re500m	150	150	0	460	3,04	1,07	1,17	0,16	550
125	Huber et al.	Re1000m	300	300	0	920	3,04	1,15	1,25	0,16	550
126	Huber et al.	Pb250m	75	150	50	230	3,04	0,86	1,17	0,16	550
127	Huber et al.	Pb500m	150	300	100	460	3,04	0,86	1,17	0,16	550
128	Huber et al.	Pb1000m	300	600	200	920	3,04	0,92	1,25	0,16	550
129	Bresler et al.	A-1	310	310	0	466	3,92	1,48	1,79	0,18	555
130	Bresler et al.	A-2	305	305	0	464	4,93	1,89	2,28	0,18	555
131	Bresler et al.	A-3	307	307	0	466	6,87	2,24	2,70	0,18	555
132	Bresler et al.	B-1	231	231	0	461	3,97	2,01	2,42	0,24	555
133	Bresler et al.	B-2	229	229	0	466	4,91	2,01	2,42	0,24	555
134	Bresler et al.	B-3	229	229	0	461	6,94	2,54	3,06	0,24	555
135	Bresler et al.	C-1	155	155	0	464	3,95	1,49	1,80	0,35	555
136	Bresler et al.	C-2	152	152	0	464	4,92	3,03	3,64	0,36	555
137	Bresler et al.	C-3	155	155	0	459	6,98	3,01	3,63	0,36	555
138	Sherwood	S-10HS	122	122	0	280	2,89	1,13	1,33	0,08	450
139	Sherwood	L-10HS	300	300	0	1400	2,89	1,24	1,34	0,14	450
140	Moayer et al.	P20	150	600	80	279	3,55	0,94	1,89	0,00	641
141	Moayer et al.	P21	150	600	80	279	5,36	0,94	1,89	0,00	641
142	Moayer et al.	P22	150	600	80	279	5,36	0,94	1,89	0,00	641
143	Sörensen	T21	110	400	80	298	3,52	2,02	3,83	0,61	420
144	Sörensen	T22	110	400	80	298	3,52	2,02	3,83	0,47	420
145	Sörensen	T23	110	400	80	298	3,52	2,02	3,83	0,35	420
146	Sörensen	Т3а	110	400	80	298	3,52	2,02	3,83	0,61	457
147	Sörensen	T4a	110	400	80	298	3,52	2,02	3,83	0,61	457
148	Sörensen	T1b	110	400	80	298	3,52	2,02	3,83	0,61	457
149	Sörensen	T2b	110	400	80	298	3,52	2,02	3,83	0,61	457
150	Sörensen	T3b	110	400	80	298	3,52	2,02	3,83	0,61	457
151	Sörensen	T4b	110	400	80	298	3,52	2,02	3,83	0,61	457
152	Sörensen	Т5	110	400	80	298	3,52	2,02	3,83	0,61	457
153	Leonhardt et al.	TA12	160	960	80	375	3,33	2,01	4,52	0,52	409

2

			~								-
Nr.	Lit.	Bez.	Øw	Sw	s _{w/} /d	ρw	tyw	dg	fc	fct	Vexp
-	-	-	mm	mm	-	%	MPa	mm	MPa	MPa	kN
121	Regan	Т37	9,5	114	0,45	0,822	270	19,05	31,2	2,4	209,1
122	Regan	Т38	9,5	114	0,45	0,822	270	19,05	31,9	2,5	238,1
123	Huber et al.	Re250m	3,0	100	0,43	0,094	700	16	46,2	3,4	26,0
124	Huber et al.	Re500m	6,0	200	0,43	0,094	569	16	51,3	3,7	83,0
125	Huber et al.	Re1000m	12,0	400	0,43	0,094	552	16	60,9	3,9	402,1
126	Huber et al.	Pb250m	3,0	100	0,43	0,094	700	16	46,2	3,4	23,3
127	Huber et al.	Pb500m	6,0	200	0,43	0,094	569	16	51,3	3,7	93,5
128	Huber et al.	Pb1000m	12,0	400	0,43	0,094	552	16	60,9	3,9	390,4
129	Bresler et al.	A-1	6,4	210	0,45	0,098	325	19,1	24,1	2,6	233,5
130	Bresler et al.	A-2	6,4	210	0,45	0,099	325	19,1	24,3	2,5	244,7
131	Bresler et al.	A-3	6,4	210	0,45	0,098	325	19,1	35,0	2,9	233,5
132	Bresler et al.	B-1	6,4	191	0,41	0,144	325	19,1	24,8	2,7	222,4
133	Bresler et al.	B-2	6,4	191	0,41	0,145	325	19,1	23,2	2,5	200,2
134	Bresler et al.	B-3	6,4	191	0,41	0,145	325	19,1	38,7	2,8	177,9
135	Bresler et al.	C-1	6,4	210	0,45	0,195	325	19,1	29,6	2,8	155,7
136	Bresler et al.	C-2	6,4	210	0,45	0,198	325	19,1	23,8	2,6	162,4
137	Bresler et al.	C-3	6,4	210	0,46	0,195	325	19,1	35,0	2,6	135,7
138	Sherwood	S-10HS	5,0	160	0,57	0,101	495	9,5	77,3	4,6	66,0
139	Sherwood	L-10HS	9,5	235	0,17	0,101	495	9,5	71,2	4,4	694,0
140	Moayer et al.	P20	5,6	152	0,55	0,212	310	16	40,7	3,1	120,1
141	Moayer et al.	P21	5,6	229	0,82	0,141	310	16	42,8	3,2	89,8
142	Moayer et al.	P22	6,4	152	0,55	0,277	255	16	43,3	3,2	109,0
143	Sörensen	T21	8,0	175	0,59	0,522	229	32	32,5	2,5	130,2
144	Sörensen	T22	7,0	210	0,70	0,333	399	32	31,1	2,4	128,2
145	Sörensen	T23	6,0	150	0,50	0,343	349	32	34,2	2,6	140,0
146	Sörensen	Т3а	6,0	105	0,35	0,490	259	32	24,6	2,0	128,2
147	Sörensen	T4a	5,0	105	0,35	0,340	397	32	25,2	2,0	133,1
148	Sörensen	T1b	6,0	117	0,39	0,439	259	32	23,2	1,8	118,4
149	Sörensen	T2b	5,0	117	0,39	0,305	397	32	24,9	2,0	130,2
150	Sörensen	T3b	6,0	175	0,59	0,294	259	32	24,6	2,0	116,5
151	Sörensen	T4b	5,0	175	0,59	0,204	397	32	24,7	2,0	107,6
152	Sörensen	Т5	5,0	175	0,59	0,204	397	32	25,5	2,0	110,6
153	Leonhardt et al.	TA12	6,0	113	0,30	0,313	441	30	24,4	2,4	265,7

Querkraftversuche an Spannbetonbalken mit geringer Schubbewehrung mit Punktlast

Nr.	Lit.	Bez.	b _w	b _{fc}	h _{fc}	d	a/d	ρι	ρ _{lw}	$\rho_{s,c}$	fy	Р	σ_{cp}
-	-	-	mm	mm	mm	mm	-	%	%	%	MPa	kN	MPa
1	Moayer et al.	P8	150	599	81	276	3,06	0,47	2,28	0,14	641	498	5,90
2	Moayer et al.	P9	150	599	81	276	3,08	0,47	2,29	0,14	641	498	5,90
3	Moayer et al.	P13	150	599	81	283	3,08	0,47	2,99	0,14	641	169	2,00
4	Moayer et al.	P14	150	599	81	283	3,06	0,47	2,28	0,14	641	169	2,00
5	Moayer et al.	P18	150	599	81	272	3,08	0,23	2,29	0,14	641	498	5,90
6	Moayer et al.	P19	150	599	81	272	3,08	0,23	2,99	0,14	641	498	5,90
7	Moayer et al.	P24	150	599	81	283	3,06	0,47	2,28	0,14	641	169	2,00
8	Moayer et al.	P25	150	599	81	283	3,08	0,47	2,29	0,14	641	169	2,00
9	Moayer et al.	P26	150	599	81	272	3,08	0,23	2,99	0,14	641	498	5,90
10	Moayer et al.	P27	150	599	81	272	3,06	0,23	2,28	0,14	641	498	5,90
11	Moayer et al.	P28	150	599	81	276	3,08	0,47	2,29	0,14	641	498	5,90
12	Moayer et al.	P29	150	599	81	276	3,08	0,47	2,99	0,14	641	498	5,90
13	Moayer et al.	P49	150	599	81	279	3,00	0,94	1,26	0,22	641	329	3,90
14	Moayer et al.	P50	150	599	81	279	3,00	0,94	1,26	0,11	641	329	3,90
15	Federssen et al.	D1V	140	620	80	492	3,00	0,26	1,26	0,07	516	738	5,33
16	Federssen et al.	D1H	140	620	80	492	3,00	0,26	1,26	0,05	516	738	5,33
17	Federssen et al.	D2V	140	620	80	497	4,01	1,58	2,23	0,00	511	567	4,09
18	Federssen et al.	D2H	140	620	80	497	4,01	1,58	2,23	0,00	511	567	4,09
19	Federssen et al.	D5V	140	620	80	500	4,01	1,56	2,23	0,00	511	371	2,68
20	Federssen et al.	D5H	140	620	80	500	4,01	1,56	2,23	0,00	511	371	2,68
21	Federssen et al.	D6V	140	620	80	500	4,01	1,56	2,23	0,00	511	374	2,70
22	Federssen et al.	D6H	140	620	80	500	4,01	1,56	2,23	0,00	511	374	2,70
23	Huber et.al	2	420	820	290	858	4,01	0,09	2,23	0,00	435	4223	6,47
24	Lyngberg	1A-3	120	700	90	540	2,92	0,45	0,76	0,00	581	601	3,77
25	Lyngberg	2A-3	120	700	90	540	2,92	0,45	1,01	0,00	603	631	3,95
26	Lyngberg	2B-3	120	700	90	540	2,92	0,45	1,01	0,00	602	629	3,94
27	Lyngberg	3A-2	120	700	90	540	2,92	0,90	1,01	0,00	607	421	2,64
28	Lyngberg	3B-2	120	700	90	540	2,92	0,90	1,01	0,00	608	421	2,64
29	Lyngberg	4A-1	120	700	90	546	3,10	1,35	2,50	0,73	656	217	1,36
30	Lyngberg	4B-1	120	700	90	546	3,10	1,35	2,50	0,79	662	209	1,31
31	Cederwall et al.	734-45	137	137	0	236	3,10	0,35	2,50	0,79	687	113	3,14
32	Cederwall et al.	824-1B	132	132	0	237	3,10	0,72	2,50	0,79	687	69	1,98
33	Cederwall et al.	824-2B	131	131	0	236	3,10	0,73	2,50	0,84	687	125	3,63
34	Cederwall et al.	824-1C	132	132	0	234	3,10	0,73	2,50	0,79	687	83	2,43
35	Cederwall et al.	803-2S	130	130	0	234	3,10	0,37	2,50	0,79	883	103	3,05
36	Cederwall et al.	803-1S	130	130	0	234	3,23	0,37	2,83	0,06	883	92	2,73
37	Cederwall et al.	842-6	131	131	0	232	3,23	1,49	2,83	0,06	687	120	3,49
38	Cederwall et al.	842-7B	131	131	0	231	3,23	1,49	2,83	0,06	687	126	3,69

Tabelle	B.6:	Datenbank	SpB_	_mit
---------	------	-----------	------	------

Forts	Fortsetzung Tabelle B.6												2
Nr.	Lit.	Bez.	ρ	σ _p / f _{pv}	Øw	Sw	s _w /d	ρw	f _{yw}	dg	fc	fct	Vexp
-	-	-	%	-	mm	mm	-	%	MPa	mm	MPa	MPa	kN
1	Moayer et al.	P8	0,35	0,59	5,6	152	0,55	0,21	310	k.A	42,7	3,19	178,4
2	Moayer et al.	P9	0,35	0,59	5,6	229	0,83	0,14	310	k.A	40,4	3,05	120,1
3	Moayer et al.	P13	0,18	0,61	5,6	152	0,54	0,21	310	k.A	39,4	2,98	140,1
4	Moayer et al.	P14	0,18	0,61	5,6	229	0,81	0,14	310	k.A	44,1	3,28	96,5
5	Moayer et al.	P18	0,35	0,59	5,6	152	0,56	0,21	310	k.A	44,5	3,30	160,1
6	Moayer et al.	P19	0,35	0,59	5,6	229	0,84	0,14	310	k.A	45,4	3,35	109,0
7	Moayer et al.	P24	0,18	0,61	6,4	102	0,36	0,42	255	k.A	43,4	3,24	147,7
8	Moayer et al.	P25	0,18	0,61	6,4	152	0,54	0,28	255	k.A	44,0	3,27	104,1
9	Moayer et al.	P26	0,35	0,59	6,4	102	0,37	0,42	255	k.A	47,3	3,47	169,9
10	Moayer et al.	P27	0,35	0,59	6,4	152	0,56	0,28	255	k.A	45,4	3,35	114,8
11	Moayer et al.	P28	0,35	0,59	6,4	102	0,37	0,42	255	k.A	44,9	3,32	193,9
12	Moayer et al.	P29	0,35	0,59	6,4	152	0,55	0,28	255	k.A	46,6	3,42	134,8
13	Moayer et al.	P49	0,35	0,39	6,4	102	0,36	0,42	255	k.A	37,8	2,88	189,9
14	Moayer et al.	P50	0,35	0,39	7,9	102	0,36	0,65	283	k.A	41,2	3,10	230,0
15	Federssen et al.	D1V	0,68	0,56	6,0	250	0,51	0,16	517	k.A	43,2	3,22	385,0
16	Federssen et al.	D1H	0,68	0,56	6,0	250	0,51	0,16	517	k.A	43,2	3,22	430,0
17	Federssen et al.	D2V	0,50	0,58	6,0	250	0,50	0,16	517	k.A	41,1	3,09	545,0
18	Federssen et al.	D2H	0,50	0,58	6,0	250	0,50	0,16	517	k.A	41,1	3,09	425,0
19	Federssen et al.	D5V	0,33	0,57	6,0	250	0,50	0,16	517	k.A	48,7	3,55	425,0
20	Federssen et al.	D5H	0,33	0,57	6,0	250	0,50	0,16	517	k.A	48,7	3,55	355,0
21	Federssen et al.	D6V	0,33	0,57	6,0	250	0,50	0,16	517	k.A	36,5	2,80	350,0
22	Federssen et al.	D6H	0,33	0,57	6,0	250	0,50	0,16	517	k.A	36,5	2,80	280,0
23	Huber et.al	2	1,18	0,51	12,0	250	0,29	0,22	435	16	60,0	4,13	1836,5
24	Lyngberg	1A-3	0,50	0,57	8,0	120	0,22	0,70	626	k.A	33,8	2,90	518,0
25	Lyngberg	2A-3	0,50	0,59	8,0	158	0,29	0,53	616	k.A	32,6	2,93	510,0
26	Lyngberg	2B-3	0,50	0,59	8,0	158	0,29	0,53	643	k.A	33,9	2,89	519,0
27	Lyngberg	3A-2	0,33	0,59	8,0	158	0,29	0,53	663	k.A	31,1	2,89	493,0
28	Lyngberg	3B-2	0,33	0,59	8,0	158	0,29	0,53	625	k.A	27,5	2,49	437,0
29	Lyngberg	4A-1	0,16	0,61	8,0	158	0,29	0,53	639	k.A	31,5	2,82	473,0
30	Lyngberg	4B-1	0,16	0,59	8,0	158	0,29	0,53	658	k.A	30,4	2,53	458,0
31	Cederwall et al.	734-45	0,70	0,57	6,0	200	0,85	0,21	495	k.A	26,6	2,11	91,1
32	Cederwall et al.	824-1B	0,72	0,34	6,0	200	0,84	0,21	495	k.A	42,7	3,19	117,0
33	Cederwall et al.	824-2B	0,73	0,62	6,0	200	0,85	0,22	520	k.A	26,4	2,09	117,2
34	Cederwall et al.	824-1C	0,73	0,42	6,0	100	0,43	0,43	488	k.A	16,1	1,21	89,1
35	Cederwall et al.	803-2S	0,74	0,52	6,0	200	0,85	0,22	235	k.A	29,4	2,31	69,4
36	Cederwall et al.	803-1S	0,74	0,46	6,0	200	0,85	0,22	235	k.A	25,2	2,00	85,7
37	Cederwall et al.	842-6	0,74	0,60	6,0	200	0,86	0,22	530	k.A	47,3	3,47	131,7
38	Cederwall et al.	842-7B	0,75	0,63	6,0	200	0,86	0,22	530	k.A	36,6	2,81	130,3

1

1 0113	cizung rabelle i	5.0											•
Nr.	Lit.	Bez.	bw	b _{fc}	h _{fc}	d	a/d	ρι	ρıw	ρ _{s,c}	fy	Ρ	σcp
-	-	-	mm	mm	mm	mm	-	%	%	%	MPa	kN	MPa
39	Cederwall et al.	842-8	132	132	0	232	3,23	1,48	2,83	0,06	687	134	3,89
40	Cederwall et al.	842-10	131	131	0	231	3,23	1,49	2,83	0,06	687	118	3,44
41	Cederwall et al.	842-11	131	131	0	232	3,23	1,49	2,83	0,06	687	118	3,46
42	Cederwall et al.	842-12	131	131	0	232	3,23	1,49	2,83	0,06	687	107	3,14
43	Cederwall et al.	842-13	132	132	0	234	3,23	1,46	2,83	0,06	687	107	3,13
44	Cederwall et al.	842-14	131	131	0	232	3,23	1,49	2,83	0,06	687	41	1,20
45	Cederwall et al.	842-16	131	131	0	229	3,45	1,51	1,49	0,22	687	71	2,08

Forts	etzung Tabelle I	3.6											2
Nr.	Lit.	Bez.	ρ	σ _p / f _{py}	Øw	Sw	s _w /d	ρ _w	f _{yw}	dg	fc	f _{ct}	Vexp
-	-	-	%	-	mm	mm	-	%	MPa	mm	MPa	MPa	kN
39	Cederwall et al.	842-8	0,74	0,67	6,0	150	0,65	0,29	530	k.A	57,7	4,05	161,2
40	Cederwall et al.	842-10	0,75	0,59	6,0	200	0,86	0,22	353	k.A	52,0	3,74	108,2
41	Cederwall et al.	842-11	0,74	0,59	6,0	200	0,86	0,22	353	k.A	51,8	3,73	91,7
42	Cederwall et al.	842-12	0,74	0,54	6,0	200	0,86	0,22	353	k.A	54,9	3,90	192,2
43	Cederwall et al.	842-13	0,73	0,54	6,0	200	0,85	0,21	353	k.A	54,9	3,90	122,7
44	Cederwall et al.	842-14	0,74	0,21	6,0	200	0,86	0,22	530	k.A	41,9	3,14	109,7
45	Cederwall et al.	842-16	0,75	0,35	6,0	200	0,87	0,22	530	k.A	52,9	3,79	158,2

Querkraftversuche an auskragenden Fahrbahnplatten ohne Schubbewehrung mit Punktlast

Nr.	Lit.	Bez.	b _{Platte} *	h _{An-} schnitt	h _{Ende}	α _{Vou}	d _{An-} schnitt	a/d	ρι	fy	dg	fc	f _{ct}	fq	I _{fq}	n _{La} st	\mathbf{F}_{ges}
-	-	-	mm	mm	mm		mm	-	%	MPa	mm	MPa	MPa	kN/m	mm		kN
1	Hegger et al.	CS35B-1	3500	280	280	0,0	240	4,17	0,98	920	16	37,0	2,6	0,0	1708	1	571
2	Hegger et al.	CS35B-2	3500	280	160	3,8	240	4,17	0,98	920	16	38,4	2,7	0,0	1708	1	477
3	Hegger et al.	CP35B-1	3500	280	280	0,0	240	4,17	0,98	920	16	34,3	2,8	86,4	1708	1	539
4	Hegger et al.	CP35B-2	3500	280	160	3,8	240	4,17	0,98	920	16	34,8	3,0	86,4	1708	1	453
5	Rombach et al.	VK1-V1	2400	300	190	3,8	247	2,88	0,82	554	16	35,0	2,9	32,1	1500	1	690
6	Rombach et al.	VK2-V1	2400	250	250	0,0	217	3,27	1,16	554	16	46,0	3,4	22,5	1500	1	678
7	Rombach et al.	VK3-V1	2400	250	140	3,8	217	3,27	1,16	554	16	46,5	3,3	22,5	1500	1	672
8	Rombach et al.	VK4-V1	2400	200	200	0,0	167	4,25	1,20	554	16	42,5	3,2	0,0	1500	1	487
9	Vaz Rodriguez et al.	DR1-a	10000	380	190	3,9	340	2,76	0,79	499	16	39,1	2,9	0,0	0	4	1397
10	Vaz Rodriguez et al.	DR1-b	10000	380	190	3,9	340	3,82	0,79	499	16	39,9	3,0	0,0	0	2	1025
11	Vaz Rodriguez et al.	DR1-c	10000	380	190	3,9	340	3,82	0,79	499	16	40,8	3,1	0,0	0	1	910
12	Vaz Rodriguez et al.	DR2-a	10000	380	190	3,9	340	3,82	0,60	505	16	38,9	3,1	0,0	0	2	961
13	Vaz Rodriguez et al.	DR2-b	10000	380	190	3,9	340	3,82	0,60	505	16	42,0	3,1	0,0	0	2	857
14	Vaz Rodriguez et al.	DR2-c	10000	380	190	3,9	340	3,82	0,60	505	16	42,4	3,1	0,0	0	1	719

Tabelle B.7: Datenbank Kragplatte

AISIFII INIAIG bm

ANHANG C – Druck - Zugversuche

Lit.	Beton	f c,cyl	f _{c,biax}	fct	f _{ct,biax}	fct, EC2	σ2	σ 1	σ_2/f_c	σ₁/f _{ct}
		MPa	MPa	MPa	MPa	MPa	MPa	MPa	-	-
Hampel, Cur-	1/I	64,7	60,15		4,22	4,26	0,00	4,22	0,00	1,00
bach 2006		64,7	60,15		4,22	4,26	-4,62	2,31	-0,08	0,55
		64,7	60,15		4,22	4,26	-11,94	2,39	-0,20	0,57
		64,7	60,15		4,22	4,26	-18,38	1,84	-0,31	0,44
		64,7	60,15		4,22	4,26	-28,81	1,44	-0,48	0,34
		64,7	60,15		4,22	4,26	-40,64	1,01	-0,68	0,24
		64,7	60,15		4,22	4,26	-60,15	0,00	-1,00	0,00
	2/I	74,5	69,17		4,88	4,52	0,00	4,88	0,00	1,00
		74,5	69,17		4,88	4,52	-3,66	2,94	-0,05	0,60
		74,5	69,17		4,88	4,52	-5,13	2,57	-0,07	0,53
		74,5	69,17		4,88	4,52	-13,77	2,76	-0,20	0,57
		74,5	69,17		4,88	4,52	-21,76	2,18	-0,31	0,45
		74,5	69,17		4,88	4,52	-35,71	1,77	-0,52	0,36
		74,5	69,17		4,88	4,52	-45,69	1,14	-0,66	0,23
		74,5	69,17		4,88	4,52	-69,17	0,00	-1,00	0,00
	3/I	94,1	87,44		5,15	4,97	0,00	5,15	0,00	1,00
		94,1	87,44		5,15	4,97	-5,75	4,61	-0,07	0,90
		94,1	87,44		5,15	4,97	-6,50	3,26	-0,07	0,63
		94,1	87,44		5,15	4,97	-14,35	2,88	-0,16	0,56
		94,1	87,44		5,15	4,97	-26,22	2,63	-0,30	0,51
		94,1	87,44		5,15	4,97	-33,44	1,67	-0,38	0,32
		94,1	87,44		5,15	4,97	-49,75	1,25	-0,57	0,24
		94,1	87,44		6,15	4,97	-87,44	0,00	-1,00	0,00
Kupfer 1962	1	19,7	18,74		1,96	2,75	0,00	1,96	0,00	1,00
		19,7	18,74		1,96	2,75	-8,14	1,64	-0,43	0,84
		19,7	18,74		1,96	2,75	-13,64	1,40	-0,73	0,72
		19,7	18,74		1,96	2,75	-16,19	1,13	-0,86	0,58
		19,7	18,74		1,96	2,75	-17,66	0,92	-0,94	0,47
		19,7	18,74		1,96	2,75	-18,74	0,00	-1,00	0,00
	2	32,1	30,51		2,79	3,52	0,00	2,79	0,00	1,00
		32,1	30,51		2,79	3,52	-11,18	2,26	-0,37	0,81
		32,1	30,51		2,79	3,52	-18,84	1,94	-0,62	0,70
		32,1	30,51		2,79	3,52	-23,54	1,65	-0,77	0,59
		32,1	30,51		2,79	3,52	-26,00	1,35	-0,85	0,49
		32,1	30,51		2,79	3,52	-30,51	0,00	-1,00	0,00
	3	61,3	58,27		5,12	4,17	0,00	5,12	0,00	1,00
		61,3	58,27		5,12	4,17	-16,87	3,41	-0,29	0,67
		61,3	58,27		5,12	4,17	-25,31	2,61	-0,43	0,51

Tabelle B.8: Versuchsergebnisse der Scheibenversuche

Fortsetzung Tabelle B.8

Lit.	Beton	f c,cyl	f c,biax	fct	f ct,biax	fct, EC2	σ2	σ 1	σ₂/fc	σ ₁ /f _{ct}
		MPa	MPa	MPa	MPa	MPa	MPa	MPa	-	-
Hampel, Cur-	1/I	64,7	60,15		4,22	4,26	0,00	4,22	0,00	1,00
bach 2006		64,7	60,15		4,22	4,26	-4,62	2,31	-0,08	0,55
		64,7	60,15		4,22	4,26	-11,94	2,39	-0,20	0,57
		64,7	60,15		4,22	4,26	-18,38	1,84	-0,31	0,44
		64,7	60,15		4,22	4,26	-28,81	1,44	-0,48	0,34
		64,7	60,15		4,22	4,26	-40,64	1,01	-0,68	0,24
		64,7	60,15		4,22	4,26	-60,15	0,00	-1,00	0,00
	2/I	74,5	69,17		4,88	4,52	0,00	4,88	0,00	1,00
		74,5	69,17		4,88	4,52	-3,66	2,94	-0,05	0,60
		74,5	69,17		4,88	4,52	-5,13	2,57	-0,07	0,53
		74,5	69,17		4,88	4,52	-13,77	2,76	-0,20	0,57
		74,5	69,17		4,88	4,52	-21,76	2,18	-0,31	0,45
		74,5	69,17		4,88	4,52	-35,71	1,77	-0,52	0,36
		74,5	69,17		4,88	4,52	-45,69	1,14	-0,66	0,23
		74,5	69,17		4,88	4,52	-69,17	0,00	-1,00	0,00
	3/I	94,1	87,44		5,15	4,97	0,00	5,15	0,00	1,00
		94,1	87,44		5,15	4,97	-5,75	4,61	-0,07	0,90
		94,1	87,44		5,15	4,97	-6,50	3,26	-0,07	0,63
		94,1	87,44		5,15	4,97	-14,35	2,88	-0,16	0,56
		94,1	87,44		5,15	4,97	-26,22	2,63	-0,30	0,51
		94,1	87,44		5,15	4,97	-33,44	1,67	-0,38	0,32
		94,1	87,44		5,15	4,97	-49,75	1,25	-0,57	0,24
		94,1	87,44		6,15	4,97	-87,44	0,00	-1,00	0,00
Kupfer 1962	1	19,7	18,74		1,96	2,75	0,00	1,96	0,00	1,00
		19,7	18,74		1,96	2,75	-8,14	1,64	-0,43	0,84
		19,7	18,74		1,96	2,75	-13,64	1,40	-0,73	0,72
		19,7	18,74		1,96	2,75	-16,19	1,13	-0,86	0,58
		19,7	18,74		1,96	2,75	-17,66	0,92	-0,94	0,47
		19,7	18,74		1,96	2,75	-18,74	0,00	-1,00	0,00
	2	32,1	30,51		2,79	3,52	0,00	2,79	0,00	1,00
		32,1	30,51		2,79	3,52	-11,18	2,26	-0,37	0,81
		32,1	30,51		2,79	3,52	-18,84	1,94	-0,62	0,70
		32,1	30,51		2,79	3,52	-23,54	1,65	-0,77	0,59
		32,1	30,51		2,79	3,52	-26,00	1,35	-0,85	0,49
		32,1	30,51		2,79	3,52	-30,51	0,00	-1,00	0,00
	3	61,3	58,27		5,12	4,17	0,00	5,12	0,00	1,00
		61,3	58,27		5,12	4,17	-16,87	3,41	-0,29	0,67
		61.3	58.27		5.12	4.17	-25,31	2.61	-0.43	0.51